Preview

Russian Ophthalmological Journal

Advanced search

Wound healing in glaucoma surgery. Part 4. Postoperative methods

https://doi.org/10.21516/2072-0076-2025-18-3-152-157

Abstract

Glaucoma surgery is currently the most effective method of intraocular pressure reducing. However, the wound healing surgical area processes prevent the intraocular fluid outflow, that reduce the long-term effectiveness of the surgery. A highly effective method of preventing scarring is the use of cytostatics, however, the lack of official indications and significant side effects limit it’s use. Currently, there are more than three dozen different methods of intraand postoperative antiscar therapy, including cytostatic, anti-inflammatory, anti-angiogenic and anti-neoplastic drugs, as well as the use of β-radiation and cross-linking.

About the Authors

S. Yu. Petrov
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Sergey Yu. Petrov — Dr. of Med. Sci., head of glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



O. M. Filippova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Olga M. Filippova — Cand. of Med. Sci., researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. D. Epkhieva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Anzhela D. Epkhieva — graduate student of glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Chester D, Brown AC. The role of biophysical properties of provisional matrix proteins in wound repair. Matrix Biol. 2017; 60–61: 124–40. doi:10.1016/j.matbio.2016.08.004

2. Izmailova N.S., Petrov S.Yu., Dzebisova A.D. Wound healing in glaucoma surgery. Part 1. Wound healing morphology. Russian Ophthalmological Journal. 2024; 17 (4): 116–20 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-4-116-120

3. Abaev Yu.K. Biology of acute and chronic wound healing. Medical news. 2003; 6: 3-10 (In Russ.).

4. Izmailova N.S., Petrov S. Yu., Epkhieva A.D. Wound healing in glaucoma surgery. Part 2. Risk factors. Russian ophthalmological journal. 2025; 18 (1): 145–9 (In Russ.). https://doi.org/10.21516/2072-0076-2025-18-1-145-149

5. Petrov S.Yu., Yani E.V., Filippova O.M., Epkhieva A.D. Wound healing in glaucoma surgery. Part 3. Methods of preoperative prevention. Russian Ophthalmological Journal. 2025; 18 (2): 153–9 (In Russ.). https://doi.org/10.21516/2072-0076-2025-18-2-153-159

6. Zaidi AA. Trabeculectomy: a review and 4-year follow-up. Br J Ophthalmol. 1980; 64 (6): 436–9. doi:10.1136/bjo.64.6.436

7. de Oliveira CM, Ferreira JLM. Overview of cicatricial modulators in glaucoma fistulizing surgery. Int Ophthalmol. 2020; 40 (10): 2789–96. doi:10.1007/s10792-020-01454-w

8. Van Bergen T, Van de Velde S, Vandewalle E, Moons L, Stalmans I. Improving patient outcomes following glaucoma surgery: state of the art and future perspectives. Clin Ophthalmol. 2014; 8: 857–67. doi:10.2147/OPTH.S48745

9. Malyugin B.E., Sidorova A.V., Starostina A.V., et al. Pharmacological modulation of wound healing in glaucoma surgery. Vestnik oftal’mologii. 2022; 138 (4): 136–43 (In Russ.). doi:10.17116/oftalma2022138041136

10. Hata T, Hoshi T, Kanamori K, et al. Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot (Tokyo). 1956 Jul; 9 (4): 141–6. PMID: 13385186

11. Crowston JG, Akbar AN, Constable PH, et al. Antimetabolite-induced apoptosis in Tenon’s capsule fibroblasts. Invest Ophthalmol Vis Sci. 1998 Feb; 39 (2): 449–54. PMID: 9478007.

12. Loon SC, Chew PT. A major review of antimetabolites in glaucoma therapy. Ophthalmologica. 1999; 213 (4): 234–45. doi:10.1159/000027428

13. Wilkins M, Indar A, Wormald R. Intra-operative mitomycin C for glaucoma surgery. Cochrane Database Syst Rev. 2005; 2005 (4): CD002897. doi:10.1002/14651858.CD002897.pub2

14. Bell K, de Padua Soares Bezerra B, Mofokeng M, et al. Learning from the past: Mitomycin C use in trabeculectomy and its application in bleb-forming minimally invasive glaucoma surgery. Surv Ophthalmol. 2021; 66 (1): 109–23. doi:10.1016/j.survophthal.2020.05.005

15. Yazdani S, Rezai S, Pakravan M, Afrouzifar M, Ghahari E. Mitomycin-C application before versus after scleral flap dissection in trabeculectomy; a randomized clinical trial. J Ophthalmic Vis Res. 2015; 10 (4): 391–9. doi:10.4103/2008-322X.176910

16. Pakravan M, Esfandiari H, Yazdani S, et al. Mitomycin C-augmented trabeculectomy: subtenon injection versus soaked sponges: a randomised clinical trial. Br J Ophthalmol. 2017; 101 (9): 1275–80. doi:10.1136/bjophthalmol-2016-309671

17. Lee SJ, Paranhos A, Shields MB. Does titration of mitomycin C as an adjunct to trabeculectomy significantly influence the intraocular pressure outcome? Clin Ophthalmol. 2009; 3: 81–7. PMID: 19668548

18. Vinod K, Gedde SJ, Feuer WJ, et al. Practice preferences for glaucoma surgery: A survey of the American Glaucoma Society. J Glaucoma. 2017; 26 (8): 687–93. doi:10.1097/IJG.0000000000000720

19. Terminology and guidelines for glaucoma. European Glaucoma Society. 5th edition ed: Savona, Italy PubliComm; 2020.

20. Blumenkranz MS, Hartzer MK, Hajek AS. Selection of therapeutic agents for intraocular proliferative disease. II. Differing antiproliferative activity of the fluoropyrimidines. Arch Ophthalmol. 1987; 105 (3): 396–9. doi:10.1001/archopht.1987.01060030116039

21. Amoozgar B, Lin SC, Han Y, Kuo J. A role for antimetabolites in glaucoma tube surgery: current evidence and future directions. Curr Opin Ophthalmol. 2016; 27 (2): 164–9. doi:10.1097/ICU.0000000000000244

22. Sisto D, Vetrugno M, Trabucco T, et al. The role of antimetabolites in filtration surgery for neovascular glaucoma: intermediate-term follow-up. Acta Ophthalmol Scand. 2007; 85 (3): 267–71. doi:10.1111/j.1600-0420.2006.00810.x

23. Khaw PT, Doyle JW, Sherwood MB, et al. Prolonged localized tissue effects from 5-minute exposures to fluorouracil and mitomycin C. Arch Ophthalmol. 1993; 111 (2): 263–7. doi:10.1001/archopht.1993.01090020117035

24. Doyle JW, Sherwood MB, Khaw PT, McGrory S, Smith MF. Intraoperative 5-fluorouracil for filtration surgery in the rabbit. Invest Ophthalmol Vis Sci. 1993 Nov; 34 (12): 3313–9. PMID: 8225866.

25. Van Buskirk EM. Five-year follow-up of the Fluorouracil Filtering Surgery Study. Am J Ophthalmol. 1996; 122 (5): 751–2. doi:10.1016/s0002-9394(14)70507-0

26. Katz GJ, Higginbotham EJ, Lichter PR, et al. Mitomycin C versus 5-fluorouracil in high-risk glaucoma filtering surgery. Extended follow-up. Ophthalmology. 1995; 102 (9): 1263–9. doi:10.1016/s0161-6420(95)30875-5

27. Siriwardena D, Edmunds B, Wormald RP, Khaw PT. National survey of antimetabolite use in glaucoma surgery in the United Kingdom. Br J Ophthalmol. 2004; 88 (7): 873–6. doi:10.1136/bjo.2003.034256

28. Yanoff M, Duker JS. Ophthalmology. 4th ed: Elsevier Inc.; 2014. doi:10.1007/s00417-015-3050-y

29. Hu DN, Ritch R, Liebmann J, et al. Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes. J Glaucoma. 2002; 11 (5): 406–10. doi:10.1097/00061198-200210000-00006

30. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983; 219 (4587): 983–5. doi:10.1126/science.6823562

31. Gheith ME, Siam GA, de Barros DS, Garg SJ, Moster MR. Role of intravitreal bevacizumab in neovascular glaucoma. J Ocul Pharmacol Ther. 2007; 23 (5): 487–91. doi:10.1089/jop.2007.0036

32. Kahook MY, Schuman JS, Noecker RJ. Intravitreal bevacizumab in a patient with neovascular glaucoma. Ophthalmic Surg Lasers Imaging. 2006 Mar-Apr; 37 (2): 144–6. PMID: 16583637.

33. Yazdani S, Hendi K, Pakravan M. Intravitreal bevacizumab (Avastin) injection for neovascular glaucoma. J Glaucoma. 2007; 16 (5): 437–9. doi:10.1097/IJG.0b013e3180457c47

34. Jonas JB, Spandau UH, Schlichtenbrede F. Intravitreal bevacizumab for filtering surgery. Ophthalmic Res. 2007; 39 (2): 121–2. doi:10.1159/000099248

35. Grewal DS, Jain R, Kumar H, Grewal SP. Evaluation of subconjunctival bevacizumab as an adjunct to trabeculectomy a pilot study. Ophthalmology. 2008; 115 (12): 2141–5 e2142. doi:10.1016/j.ophtha.2008.06.009

36. Nilforushan N, Yadgari M, Kish SK, Nassiri N. Subconjunctival bevacizumab versus mitomycin C adjunctive to trabeculectomy. Am J Ophthalmol. 2012; 153 (2): 352–7 e351. doi:10.1016/j.ajo.2011.08.005

37. Mamikonyan V.R., Petrov S.Yu., Mazurova Yu.V., Safonova D.M., Sorokin A.S. Postoperative adjuvant subconjunctival ranibizumab in enhancing trabeculectomy efficacy. National journal of glaucoma. 2016; 15 (2): 61–73 (In Russ.).

38. Liu X, Du L, Li N. The effects of bevacizumab in augmenting trabeculectomy for glaucoma: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2016; 95 (15): e3223. doi:10.1097/MD.0000000000003223

39. Lukowski ZL, Min J, Beattie AR, et al. Prevention of ocular scarring after glaucoma filtering surgery using the monoclonal antibody LT1009 (Sonepcizumab) in a rabbit model. J Glaucoma. 2013; 22 (2): 145–51. doi:10.1097/IJG.0b013e31822e8c83

40. Turgut B, Eren K, Akin MM, Bilir Can N, Demir T. Impact of trastuzumab on wound healing in experimental glaucoma surgery. Clin Exp Ophthalmol. 2015; 43 (1): 67–76. doi:10.1111/ceo.12359

41. Cheng G, Xiang H, Yang G, Ma J, Zhao J. Direct effects of bevacizumab on rat conjunctival fibroblast. Cell Biochem Biophys. 2015; 73 (1): 45–50. doi:10.1007/s12013-015-0565-0

42. Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, Dipietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest. 2008; 88 (6): 579–90. doi:10.1038/labinvest.2008.36

43. Seibold LK, Sherwood MB, Kahook M.Y. Wound modulation after filtration surgery. Surv Ophthalmol. 2012; 57 (6): 530–50. doi:10.1016/j.survophthal.2012.01.008

44. Lopilly Park HY, Kim JH, Ahn MD, Park CK. Level of vascular endothelial growth factor in tenon tissue and results of glaucoma surgery. Arch Ophthalmol. 2012; 130 (6): 685–9. doi:10.1001/archophthalmol.2011.2799

45. Ahmadzadeh A, Kessel L, Schmidt BS, Kolko M, Bach-Holm D. Steroids and/or non-steroidal anti-inflammatory drugs as postoperative treatment after trabeculectomy-12-month results of a randomized controlled trial. J Clin Med. 2024; 13 (3). doi:10.3390/jcm13030887

46. Panarelli JF, Nayak NV, Sidoti PA. Postoperative management of trabeculectomy and glaucoma drainage implant surgery. Curr Opin Ophthalmol. 2016; 27 (2): 170–6. doi:10.1097/ICU.0000000000000240

47. Starita RJ, Fellman RL, Spaeth GL, et al. Short- and long-term effects of postoperative corticosteroids on trabeculectomy. Ophthalmology. 1985; 92 (7): 938–46. doi:10.1016/s0161-6420(85)33931-3

48. Araujo SV, Spaeth GL, Roth SM, Starita RJ. A ten-year follow-up on a prospective, randomized trial of postoperative corticosteroids after trabeculectomy. Ophthalmology. 1995; 102 (12): 1753–9. doi:10.1016/s0161-6420(95)30797-x

49. Ahmadzadeh A, Schmidt BS, Bach-Holm D, Kessel L. Early inflammation control after trabeculectomy by steroid and non-steroidal eye drops: A randomized controlled trial. Ophthalmol Ther. 2023; 12 (2): 969–84. doi:10.1007/s40123-022-00636-2

50. Becker B, Mills DW. Corticosteroids and intraocular pressure. Arch Ophthalmol. 1963; 70: 500–7. doi:10.1001/archopht.1963.00960050502012

51. Fini ME, Schwartz SG, Gao X, et al. Steroid-induced ocular hypertension/ glaucoma: Focus on pharmacogenomics and implications for precision medicine. Prog Retin Eye Res. 2017; 56: 58–83. doi:10.1016/j.preteyeres.2016.09.003

52. Wilensky JT, Snyder D, Gieser D. Steroid-induced ocular hypertension in patients with filtering blebs. Ophthalmology. 1980; 87 (3): 240–4. doi:10.1016/s0161-6420(80)35248-2

53. Kessel L, Tendal B, Jorgensen KJ, et al. Post-cataract prevention of inflammation and macular edema by steroid and nonsteroidal anti-inflammatory eye drops: a systematic review. Ophthalmology. 2014; 121 (10): 1915–24. doi:10.1016/j.ophtha.2014.04.035

54. Bettin P, Khaw PT. Glaucoma surgery. S. Karger AG, Basel (Switzerland). 2012.

55. Shah M, Foreman DM, Ferguson MW. Neutralising antibody to TGF-beta 1,2 reduces cutaneous scarring in adult rodents. J Cell Sci. 1994; 107 (Pt5): 1137–57. doi:10.1242/jcs.107.5.1137

56. Siriwardena D, Khaw PT, King AJ, et al. Human antitransforming growth factor beta(2) monoclonal antibody – a new modulator of wound healing in trabeculectomy: a randomized placebo controlled clinical study. Ophthalmology. 2002; 109 (3): 427–31. doi:10.1016/s0161-6420(01)00997-6

57. Park JH, Yoo C, Kim YY. Effect of Lovastatin on wound-healing modulation after glaucoma filtration surgery in a rabbit model. Invest Ophthalmol Vis Sci. 2016; 57 (4): 1871–7. doi:10.1167/iovs.15-19003

58. Van Bergen T, Zahn G, Caldirola P, et al. Integrin alpha5beta1 Inhibition by CLT-28643 reduces postoperative wound healing in a mouse model of glaucoma filtration surgery. Invest Ophthalmol Vis Sci. 2016; 57 (14): 6428–39. doi:10.1167/iovs.16-19751

59. Schultheiss M, Schnichels S, Konrad EM, et al. alpha5beta1-Integrin inhibitor (CLT-28643) effective in rabbit trabeculectomy model. Acta Ophthalmol. 2017; 95 (1): e1-e9. doi:10.1111/aos.13215

60. Yang J., Shi L.K., Sun H.M., Wang Y.M. Antiproliferative effect of double suicide gene delivery mediated by polyamidoamine dendrimers in human Tenon’s capsule fibroblasts. Exp Ther Med. 2017; 14 (6): 5473–9. doi:10.3892/etm.2017.5235

61. Murdoch I, Puertas R, Hamedani M, Khaw PT. Long-term safety and outcomes of beta-radiation for trabeculectomy. J Glaucoma. 2023; 32 (3): 171–7. doi:10.1097/IJG.0000000000002144

62. Cohen LB, Graham TF, Fry W.E. Beta radiation; as an adjunct to glaucoma surgery in the Negro. Am J Ophthalmol. 1959 Jan; 47 (1 Part 1): 54–61. PMID: 13617352.

63. Dhalla K, Cousens S, Bowman R, Wood M, Murdoch I. Is beta radiation better than 5 Flurouracil as an adjunct for trabeculectomy surgery when combined with cataract surgery? A randomised controlled trial. PLoS One. 2016; 11 (9): e0161674. doi:10.1371/journal.pone.0161674

64. Kirwan JF, Cousens S, Venter L, et al. Effect of beta radiation on success of glaucoma drainage surgery in South Africa: randomised controlled trial. BMJ. 2006; 333 (7575): 942. doi:10.1136/bmj.38971.395301.7C

65. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003; 135 (5): 620–7. doi:10.1016/s0002-9394(02)02220-1

66. Bikbov M.M., Bikbova G.M., Surkova V.K., Zajnullina N.B. Clinical results of treatment of keratoconus using transepithelial cross-linking of corneal collagen. Ophthalmology in Russia. 2016; 13 (1): 4–9 (In Russ.). https://doi.org/10.18008/1816-5095-2016-1-4-9

67. Wollensak G., Iomdina E, Stoltenburg G, Dittert D. Cross-linking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmologica Scandinavica. 2005 Aug; 83 (4): 477–82. doi: 10.1111/j.1600-0420.2005.00447.x

68. Wollensak G, Iomdina E. Crosslinking of scleral collagen in the rabbit using glyceraldehyde. J Cataract Refract Surg. 2008 Apr; 34 (4): 651–6. doi: 10.1016/j.jcrs.2007.12.030

69. Liu TX, Wang Z. Collagen crosslinking of porcine sclera using genipin. Acta Ophthalmol. 2013; 91(4): e253–257. doi:10.1111/aos.12172

70. Hou Y, Le VNH, Toth G, et al. UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant. 2018; 18 (12): 2873–84. doi:10.1111/ajt.14874

71. Kohlhaas M, Spoerl E, Speck A, et al. [A new treatment of keratectasia after LASIK by using collagen with riboflavin/UVA light cross-linking]. Klin Monbl Augenheilkd. 2005; 222 (5): 430–6. doi:10.1055/s-2005-857950

72. Ge LY, Wu TH, Liu YQ, Jiang C, Yin X. Management of experimental trabeculectomy filtering blebs via crosslinking of the scleral flap inhibited vascularization. Graefes Arch Clin Exp Ophthalmol. 2023. doi:10.1007/s00417-023-06306-8


Review

For citations:


Petrov S.Yu., Filippova O.M., Epkhieva A.D. Wound healing in glaucoma surgery. Part 4. Postoperative methods. Russian Ophthalmological Journal. 2025;18(3):152-157. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-3-152-157

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)