Changes of tear metabolism in retinal pathology
https://doi.org/10.21516/2072-0076-2025-18-3-158-165
Abstract
The review is devoted to the changes in tear composition in the most widespread retinal disorders: diabetic retinopathy, age macular degeneration, retinopathy of prematurity, acute blood circulation disorders, vitreoretinal pathology and also in the experimental transplantation of induced pluripotent stem cells in the model of retinal pigment epithelium dystrophy. Despite the fact that retina and tear fluid are not in touch, there is a connection between the retinal state and tear fluid metabolism due to the common regulatory pathways. Tear composition display the local physiological changes in the eye even more than blood one. Correlation between concentration of certain metabolites in tears but not in blood and stage of the pathological process in retina was revealed. The review represents data about changes of a number of metabolites playing the key role in pathogenesis of retinal diseases — factors participating in the inflammation, angiogenesis, apoptosis, hemostasis, oxidative stress. The connection between these changes in tear composition and progress of the diseases are specially highlighted because it can be used for the early diagnostics and prediction of complications that is critical for the development of optimal therapeutic strategy. Tear fluid is recently often regarded as a body fluid used for the liquid biopsy that serves for the non-invasive investigation of pathological process. Easy and non-invasive way of tear fluid collection is one more preference of the method. Progress in the detection technology that allows using of very small samples makes it possible to introduce tear fluid analysis for biomarkers to the clinical practice.
About the Authors
N. B. ChesnkovaRussian Federation
Natalya B. Chesnokova — Dr. of Biol. Sci., professor, leading specialist of the department of pathophysiology and biochemistry
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
N. V. Neroeva
Russian Federation
Natalia V. Neroeva — Dr. of Med. Sci., head of the department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
T. A. Pavlenko
Russian Federation
Tatyana A. Pavlenko — Cand. of Med. Sci., head of the department of patophysiology and biochemistry
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
O. V. Beznos
Russian Federation
Olga V. Beznos — physician, department of patophysiology and biochemistry
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Ohno Y, Yako T, Satoh K, et al. Retinal damage alters gene expression profile in lacrimal glands of mice. J Pharmacol Sci. 2022; 149 (1): 20–6. doi: 10.1016/j.jphs.2022.02.007
2. Morya AK, Ramesh PV, Kaur K, et al. Diabetes more than retinopathy, it's effect on the anterior segment of eye. World J Clin Cases. 2023; 11 (16): 3736–49. doi: 10.12998/wjcc.v11.i16.3736
3. Schuerch K, Frech H, Zinkernagel M. Conjunctival microangiopathy in diabetes mellitus assessed with optical coherence tomography angiography. Transl Vis Sci Technol. 2020; 9 (6): 10. doi: 10.1167/tvst.9.6.10
4. Xue J, Zhang B, Dou S, et al. Revealing the angiopathy of lacrimal gland lesion in type 2 diabetes. Front Physiol. 2021; 12: 731234. doi: 10.3389/fphys.2021.731234
5. Yang Q, Liu L, Li J, et al. Evaluation of meibomian gland dysfunction in type 2 diabetes with dry eye disease: a non-randomized controlled trial. BMC Ophthalmol. 2023; 23 (1): 44. doi: 10.1186/s12886-023-02795-7
6. Abbouda A, Florido A, Avogaro F, et al. Identifying meibomian gland dysfunction biomarkers in a cohort of patients affected by DM type II. Vision (Basel). 2023; 7 (2): 28. doi: 10.3390/vision7020028
7. Weng J, Ross C, Baker J, et al. Diabetes-associated hyperglycemia causes rapidonset ocular surface damage. Invest Ophthalmol Vis Sci. 2023; 64 (14): 11. doi: 10.1167/iovs.64.14.11
8. Chao C, Lema C, Redfern R, Richdale K. Changes in tear glucose and insulin concentrations following an oral glucose tolerance test. Clin Exp Optom. 2023; 106 (7): 752–8. doi: 10.1080/08164622.2022.2111204
9. Zhao Z, Liu J, Shi B, et al. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients. Mol Vis. 2010; 16: 1576–84. PMID: 20806041.
10. Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina. Int J Mol Sci. 2023; 24 (3): 2927. doi: 10.3390/ijms24032927
11. Aihara M, Jinnouchi H, Yoshida A, et al. Evaluation of glycated albumin levels in tears and saliva as a marker in patients with diabetes mellitus. Diabetes Res Clin Pract. 2023; 199: 110637. doi: 10.1016/j.diabres.2023.110637
12. Tan Y, De La Toba E, Rubakhin SS, et al. NanoLC-timsTOF-assisted analysis of glycated albumin in diabetes-affected plasma and tears. J Am Soc Mass Spectrom. 2024; 35 (1): 106–13. doi: 10.1021/jasms.3c00331
13. Brunmair J, Bileck A, Schmidl D, et al. Metabolic phenotyping of tear fluid as a prognostic tool for personalised medicine exemplified by T2DM patients. EPMA J. 2022; 13 (1): 107–23. doi: 10.1007/s13167-022-00272-7
14. Cs sz E, Boross P, Csutak A, et al. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J Proteome. 2012; 75 (7): 2196–204. doi: 10.1016/j.jprot.2012.01.019
15. Kim HJ, Kim PK, Yoo HS, Kim CW. Comparison of tear proteins between healthy and early diabetic retinopathy patients. Clin Biochem. 2012; 45 (1–2): 60–7. doi: 10.1016/j.clinbiochem.2011.10.006
16. Borzilova Yu.A., Boldyreva L.A., Shlyk I.V., Shurygina I.P., Gatcu M.V. The level of VEGF-A in the lacrimal fluid of diabetic retinopathy. Kuban scientific medical bulletin. 2015; 6: 16–8 (In Russ.). doi: 10.25207/1608-6228-2015-6-16-18
17. Park KS, Kim SS, Kim JC, et al. Serum and tear levels of nerve growth factor in diabetic retinopathy patients. Am J Ophthalmol. 2008; 145 (3): 432–7. doi: 10.1016/j.ajo.2007.11.011
18. Kangilbaeva G, Bakhritdinova F, Nabieva I, Jurabekova A. Eye hemodynamic data and biochemical parameters of the lacrimal fluid of patients with nonproliferative diabetic retinopathy. Data Brief. 2020; 32:106237. doi: 10.1016/j.dib.2020.106237
19. Tsybikov N.N., Shovdra O.L., Prutkina E.V. The levels of endothelin, neuron-specific enolase, and their autoantibodies in the serum and tear fluid of patients with type 2 diabetes mellitus. Vestnik oftal’mologii. 2010; 126 (4): 14–6 (In Russ.).
20. Ruchkin M.P., Markelova E.V., Fedyashev G.A. Content of mediators of innate immunity in the tears of patients with vascular and neurodegenerative manifestations of diabetic retinopathy. Medical immunology. 2023; 25 (5): 1007–12 (In Russ.). doi: 10.15789/1563-0625-COM-2671
21. Arkhipova M.M, Neroev V.V., Baratova L.A., Lysenko V.S. L-arginine in the lacrimal fluid of patients with diabetic retinopathy and the possible role of nitric oxide in the pathogenesis of retinal ischemia. Vestnik oftal’mologii. 2000; 116 (2): 23–4 (In Russ.).
22. Neroev V.V., Chesnokova N.B., Neroeva N.V., et al. Pathogenetic role of multifunctional protein alpha-2-macroglobulin and its activity in tears and serum in age-related macular degeneration and proliferative diabetic retinopathy. Vestnik oftal’mologii. 2023; 139 (6): 26–32 (In Russ.). doi: 10.17116/oftalma202313906126
23. Bogdanov V., Kim A., Nodel M., et al. A Pilot Study of Changes in the Level of Catecholamines and the Activity of -2-Macroglobulin in the Tear Fluid of Patients with Parkinson's Disease and Parkinsonian Mice. Int J Mol Sci. 2021; 22 (9): 4736. doi: 10.3390/ijms22094736
24. Neroev V.V., Chesnokova N.B., Okhotsimskaya T.D., et al. The effect of intravitreally administered angiogenesis inhibitor on the concentration of angiotensin-converting enzyme in the blood serum and lacrimal fluid in patients with diabetic macular edema. Problemy Endokrinologii. 2019; 65 (2): 72–8 (In Russ.). doi: 10.14341/probl9710
25. Liu J, Shi B, He S, et al. Changes to tear cytokines of type 2 diabetic patients with or without retinopathy. Mol Vis. 2010; 16: 2931–8. PMID: 21203348.
26. Amorim M, Martins B, Caramelo F, et al. Putative Biomarkers in Tears for Diabetic Retinopathy Diagnosis. Front Med. 2022; 9: 873483. doi: 10.3389/fmed.2022.873483
27. Costagliola C, Romano V, De Tollis M, et al. TNF-alpha levels in tears: a novel biomarker to assess the degree of diabetic retinopathy. Mediators Inflamm. 2013; 2013:629529. doi: 10.1155/2013/629529
28. Agarkov N.M., Lev I.V. Contents of chemokines in lacrimal fluid of the patients with diabetic retinopathy and type 2 diabetes mellitus. Meditsinskaya immunologiya, 2023; 25 (1): 127–34 (In Russ.). doi: 10.15789/1563-0625-COC-2559
29. Byambajav M, Collier A, Shu X, Hagan S. Tear fluid biomarkers and quality of life in people with type 2 diabetes and dry eye disease. Metabolites. 2023; 13 (6): 733. doi: 10.3390/metabo13060733
30. Ivakhnenko O.I., Neroev V.V., Zaytseva O.V. Age-related macular degeneration and diabetic eye lesion. Socio-economic aspects. Vestnik oftal’mologii. 2021; 137 (1): 123–9 (In Russ.). doi: 10.17116/oftalma2021137011123
31. Winiarczyk M, Kaarniranta K, Winiarczyk S, et al. Tear film proteome in agerelated macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2018; 256 (6): 1127–39. doi: 10.1007/s00417-018-3984-y
32. Winiarczyk M, Biela K, Michalak K, Winiarczyk D, Mackiewicz J. Changes in tear proteomic profile in ocular diseases. Int J Environ Res Public Health. 2022; 19 (20): 13341. doi: 10.3390/ijerph192013341
33. Shahidatul-Adha M, Zunaina E, Aini-Amalina MN. Evaluation of vascular endothelial growth factor (VEGF) level in the tears and serum of age-related macular degeneration patients. Sci Rep. 2022; 12 (1): 4423. doi: 10.1038/s41598-022-08492-7
34. Yu H, Yuan L, Yang Y, et al. Increased serum IgA concentration and plasmablast frequency in patients with age-related macular degeneration. Immunobiology. 2016; 221 (5): 650–6. doi: 10.1016/j.imbio.2016.01.004
35. Valencia E, Garc a M, Fern ndez-Vega B, et al. Targeted analysis of tears revealed specific altered metal homeostasis in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2022; 63 (4): 10. doi: 10.1167/iovs.63.4.10
36. Katargina L.A., Osipova N.A. The role of various regulatory factors in pathological vasoproliferation in the retinopathy of prematurity. Rossiyskaya pediatricheskaya oftal‘mologiya. 2017; 12 (3): 145–52 (In Russ.). doi: l0.18821/1993-1859-2017-12-3-145-152
37. Vinekar A, Nair AP, Sinha S, et al. Tear fluid angiogenic factors: potential noninvasive biomarkers for retinopathy of prematurity screening in preterm infants. Invest Ophthalmol Vis Sci. 2021; 62 (3): 2. doi: 10.1167/iovs.62.3.2
38. Magnani JE, Moinuddin O, Pawar M, et al. Quantitative analysis of tear angiogenic factors in retinopathy of prematurity: a pilot biomarker study. J AAPOS. 2023; 27 (1): 14.e1-14.e6. doi: 10.1016/j.jaapos.2022.10.007
39. Jamali N, Sorenson CM, Sheibani N. Vitamin D and regulation of vascular cell function. Am J Physiol Heart Circ Physiol. 2018; 314 (4): 753–65. doi: 10.1152/ajpheart.00319.2017
40. Murugeswari P, Vinekar A, Prakalapakorn SG, et al. Correlation between tear levels of vascular endothelial growth factor and vitamin D at retinopathy of prematurity stages in preterm infants. Sci Rep. 2023; 13 (1): 16175. doi: 10.1038/s41598-023-43338-w
41. Rathi S, Jalali S, Patnaik S, et al. Abnormal complement activation and inflammation in the pathogenesis of retinopathy of prematurity. Front Immunol. 2017; 8: 1868. doi: 10.3389/fimmu.2017.01868
42. Vinekar A, Nair AP, Sinha S, et al. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity. Indian J Ophthalmol. 2023; 71 (11): 3465-72. doi: 10.4103/IJO.IJO_3407_22
43. Fu R, Klinngam W, Heur M, Edman MC, Hamm-Alvarez SF. Tear proteases and protease inhibitors: potential biomarkers and disease drivers in ocular surface disease. Eye Contact Lens. 2020; 46 (Suppl 2): 70–83. doi: 10.1097/ICL.0000000000000641
44. Hayashi K, Sueishi K. Fibrinolytic activity and species of plasminogen activator in human tears. Exp Eye Res. 1988; 46 (2): 131–7. doi: 10.1016/s0014-4835(88)80071-x
45. Somov E.E., Brzheski V.V. Coagulative and fibrinolytic activities of the lacrimal fluid in health and in acute disorders of blood circulation in the eyes. Vestnik oftal’mologii. 1992; 108 (3): 38–41 (In Russ.).
46. Tankovsky V.E. Trombosis of retinal veins. Publisher: Voenizdat (Moscow); 2000 (In Russ.).
47. Moshetova L.K., Yatsenko O.Y., Yarovaya G.A., Neshkova E.A. Tear fluid in diagnostics of the pathology of retina and optic nerve. Rossijskie meditsinskie vesti. 2004; 4: 50–3 (In Russ.).
48. Pavlenko T.A., Kugusheva A.E., Makarov P.V., Chesnokova N.B., Beznos O.V. The role of the local fibrinolytic system of the eye in the development of corneal graft failure. Russian ophthalmological journal. 2014; 7 (3): 38–42 (In Russ.).
49. Moshetova L.K., Kosyrev A.B., Tsikhonchuk T.V., et al. Assessment of regional fibrinolytic activity of tear fluid by determining the levels of D-dimer in patients with retinal vein occlusion Ophthalmology journal. 2016; 9 (4): 18–29 (In Russ.).
50. Kasza M, Balogh Z, Biro L, et al. Vascular endothelial growth factor levels in tears of patients with retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2015; 253 (9): 1581–6. doi: 10.1007/s00417-015-3030-2
51. Balashova L.M., Saksonova E.O., Zaĭtseva N.S., et al. Clinico-immunological studies in dystrophic retinal detachment complicated by proliferative vitreoretinopathy. Vestnik oftal’mologii. 1996; 112 (2): 38–41 (In Russ.).
52. Balashova L.M., Saksonova E.O., Za tseva N.S., et al. Role of immunological factors in peripheral vitreo-chorioretinal dystrophies and macular ruptures of the retina. Vestnik oftal’mologii. 1995; 111 (1): 16–8 (In Russ.).
53. Daruich A, Sauvain JJ, Matet A, et al. Levels of the oxidative stress biomarker malondialdehyde in tears of patients with central serous chorioretinopathy relate to disease activity. Mol Vis. 2020 Oct 15; 26: 722–30. PMID: 33209015.
54. Karazhaeva M.I., Saksonova E.O., Klebanov G.I., Liubitski O.B., Gur'eva N.V. The use of flavonoid antioxidants in the complex treatment of patients with peripheral vitreo-chorioretinal dystrophies and dystrophic retinal detachment. Vestnik oftal’mologii. 2004; 120 (4): 14–8 (In Russ.).
55. Katargina L.A., Chesnokova N.B., Denisova E.V., et al. The role of endothelin-1 in the pathogenesis of familial exudative vitreoretinopathy. Vestnik oftal’mologii. 2023; 139 (5): 14–8 (In Russ.). doi: 10.17116/oftalma202313905114
56. Neroeva N.V., Chesnokova N.B., Katargina L.A., et al. Changes of alpha-2-macroglobulin activity in tear fluid in experimental retinal pigment epithelium atrophy of rabbits. Russian ophthalmological journal. 2022; 15 (3): 112–7 (In Russ.). doi: 10.21516/2072-0076-2022- 15-3-112-117
57. Neroeva N.V., Neroev V.V., Chesnokova N.B., et al. Changes of a2-macroglobulin activity and endothelin-1 concentration in tears of rabbits after transplantation of retinal pigment epithelium cells derived from the induced pluripotent stem cells. Biomed khim. 2022; 68 (5): 352–60 (In Russ.). doi: 10.18097/PBMC20226805352
58. Chan HW, Yang B, Wong W, et al. A pilot study on microRNA profile in tear fluid to predict response to anti-VEGF treatments for diabetic macular edema. J Clin Med. 2020; 9: 2920. doi: 10.3390/jcm9092920
59. Torimura A, Kanei S, Shimizu Y, et al. Profiling miRNAs in tear extracellular vesicles: a pilot study with implications for diagnosis of ocular diseases. Jpn J Ophthalmol. 2024; 68 (1): 70–81. doi: 10.1007/s10384-023-01028-0
60. Hu L, Zhang T, Ma H, et al. Discovering the secret of diseases by incorporated tear exosomes analysis via rapid-isolation system: iTEARS. ACS Nano. 2022; 16 (8): 11720–32. doi: 10.1021/acsnano.2c02531
61. Sun L, Liu X, Zuo Z. Regulatory role of miRNA-23a in diabetic retinopathy. Exp Ther Med. 2021; 22 (6): 1477. doi: 10.3892/etm.2021.10912
62. Chan HW, Yang B, Wong W, et al. a pilot study on microRNA Profile in tear fluid to predict response to anti-VEGF treatments for diabetic macular edema. J Clin Med. 2020; 9 (9): 2920. doi: 10.3390/jcm9092920
Review
For citations:
Chesnkova N.B., Neroeva N.V., Pavlenko T.A., Beznos O.V. Changes of tear metabolism in retinal pathology. Russian Ophthalmological Journal. 2025;18(3):158-165. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-3-158-165


























