Geroprotective technologies in the prevention and modifying treatment of age-associated retinal diseases
https://doi.org/10.21516/2072-0076-2025-18-4-169-177
Abstract
Aging of the visual system is accompanied by a decline in visual functions and a number of features determined by genetic and epigenetic changes. Studies show that strategies affecting epigenetic mechanisms can lead to a weakening of the features associated with aging and an increase in life expectancy. On the other hand, slowing down aging is an important factor that can stop or decelerate the occurrence of age-associated retinal diseases. Numerous studies have shown various molecular mechanisms underlying aging and proposed a number of therapeutic approaches based on them associated with epigenetic regulations. Geroprotective drugs have been developed to slow down aging and senolytics aimed at removing aging cells. It is recognized that the best prospects are for a therapeutic strategy of multiple approaches, which includes the simultaneous use of several compounds and approaches aimed at different aspects of aging. It is assumed that the combined use of various technologies will also determine the success of gene or cell therapy. Multi-aspect therapy appears to be the most effective method for both decelerating aging and preventing or reducing the signs of age-related retinal diseases. Since most of the methods being developed today are still at the stage of preclinical or clinical trials, the most accessible (and efficient) means for slowing down aging today are healthy longevity technologies, such as physical activity, calorie restriction, and restoration of healthy biorhythms of the body, which are capable of exerting a profound effect on all physiological systems, including the visual system. The results of experimental studies on animals and the first clinical studies of fractal optical stimulation effects in patients with AMD show its promise as a method of geroprotective therapy and visual rehabilitation of patients with age-associated retinal diseases to improve the quality of life and slow down vision loss.
About the Authors
M. V. ZuevaRussian Federation
Marina V. Zueva — Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov, Helmholtz National Medical Research Center of Eye Diseases, leading reseacher, Institute for Biomedical Problems оf the Russian Academy of Sciences
14/19, Sadovaya-Chernogryazskaya St., Moscow,105062,
76A, Khoroshevskoe highway, Moscow, 123007
V. I. Kotelin
Russian Federation
Vladislav I. Kotelin — Cand. of Med. Sci., senior researcher, department of clinical physiology of vision named after S.V. Kravkov
14/19, Sadovaya-Chernogryazskaya St., Moscow,105062
N. V. Neroeva
Russian Federation
Natalia V. Neroeva — Dr. of Med. Sci., head of the department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow,105062
References
1. World population ageing 2023: Challenges and opportunities of population ageing in the least developed countries. United Nations, UN DESA/POP/2023/ TR/NO. 5, N.Y., 2023.
2. Vos T, Flaxman AD, Naghavi M. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380 (9859): 2163–96. doi: 10.1016/S0140-6736(12)61729-2
3. Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature. 2018 Sep; 561 (7721): 45–56. doi: 10.1038/s41586-018-0457-8
4. Crimmins EM, Kim JK, Langa KM, Weir DR. Assessment of cognition using surveys and neuropsychological assessment: the Health and Retirement Study and the Aging, Demographics, and Memory Study. J Gerontol B Psychol Sci Soc Sci. 2011; 66 (Suppl 1): i162–71. doi: 10.1093/geronb/gbr048
5. Kennedy BK, Berger SL, Brunet A, et al. Geroscience: linking aging to chronic disease. Cell. 2014 Nov 6; 159 (4): 709–13. doi: 10.1016/j.cell.2014.10.039
6. Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2014; 6 (1): 1–5. doi: 10.14336/AD.2014.1210
7. Solar Fernandez V, Marino M, Fiocchetti M. Neuroglobin in retinal neurodegeneration: A potential target in therapeutic approaches. Cells. 2021; 10 (11): 3200. doi: 10.3390/cells10113200
8. Cuenca N, Fernandez-Sanchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014; 43: 17–75. doi: 10.1016/j.preteyeres.2014.07.001
9. Enciu AM, Nicolescu MI, Manole CG, et al. Neuroregeneration in neurodegenerative disorders. BMC Neurol. 2011; 11: 75. doi: 10.1186/1471-2377-11-75
10. Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging. Am J Pathol. 2012; 181 (4): 1142–6. doi: 10.1016/j.ajpath.2012.06.024
11. Ji S, Xiong M, Chen H, et al. Cellular rejuvenation: molecular mechanisms and potential therapeutic interventions for diseases. Signal Transduct Target Ther. 2023; 8 (1): 116. doi: 10.1038/s41392-023-01343-5
12. Cipriano A, Moqri M, Maybury-Lewis SY, et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat Aging. 2024; 4 (1): 14–26. doi: 10.1038/s43587-023-00539-2
13. Luo J, Mills K, le Cessie S, Noordam R, van Heemst D. Ageing, age-related diseases and oxidative stress: what to do next? Ageing Res Rev. 2020; 57: 100982. doi: 10.1016/j.arr.2019.100982
14. Dai X, Guo X. Decoding and rejuvenating human ageing genomes: Lessons from mosaic chromosomal alterations. Ageing Res Rev. 2021; 68: 101342. doi: 10.1016/j.arr.2021.101342
15. Guo J, Huang X, Dou L, et al. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther. 2022; 7 (1): 391. doi: 10.1038/s41392-022-01251-0
16. Blagosklonny MV. Geroconversion: irreversible step to cellular senescence. Cell Cycle. 2014; 13 (23): 3628–35. doi: 10.4161/15384101.2014.985507
17. Wang K, Liu H, Hu Q, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022; 7: 374. doi: 10.1038/s41392-022-01211-8
18. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022; 28: 1556–68. https://doi.org/10.1038/s41591-022-01923-y
19. Maneu V, Lax P, Cuenca N. Current and future therapeutic strategies for the treatment of retinal neurodegenerative diseases. Neural Regen Res. 2022; 17 (1): 103–4. doi: 10.4103/1673-5374.314305
20. Garafalo AV, Cideciyan AV, Heon E, et al. Progress in treating inherited retinal diseases: early subretinal gene therapy clinical trials and candidates for future initiatives. Prog Retin Eye Res. 2020; 77: 100827. doi: 10.1016/j.preteyeres.2019.100827
21. Garita-Hernandez M, Lampic M, Chaffiol A, et al. Restoration of visual function by transplantation of optogenetically engineered photoreceptors. Nat Commun. 2019; 10 (1): 4524. doi: 10.1038/s41467-019-12330-2
22. Shen Y, Campbell RE, Côté DC, Paquet ME. Challenges for therapeutic applications of opsin-based optogenetic tools in humans. Front Neural Circuits. 2020 Jul 15; 14: 41. doi: 10.3389/fncir.2020.00041
23. Lax P, Ortuno-Lizaran I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive melanopsin-containing retinal ganglion cells in health and disease: implications for circadian rhythms. Int J Mol Sci. 2019;20:3164. doi: 10.3390/ijms20133164
24. Ramirez-Lamelas DT, Benlloch-Navarro S, Lopez-Pedrajas R, et al. Lipoic acid and progesterone alone or in combination ameliorate retinal degeneration in an experimental model of hereditary retinal degeneration. Front Pharmacol. 2018; 9: 469. doi: 10.3389/fphar.2018.00469
25. Newton F, Megaw R. Mechanisms of photoreceptor death in retinitis pigmentosa. Genes (Basel). 2020; 11: 1120. doi: 10.3390/genes11101120
26. Howes RM. The free radical fantasy: a panoply of paradoxes. Ann NY Acad Sci. 2006; 1067: 22–6. doi: 10.1196/annals.1354.004
27. Bentmann A, Schmidt M, Reuss S, et al. Divergent distribution in vascular and avascular mammalian retinae links neuroglobin to cellular respiration. J Biol Chem. 2005; 280 (21): 20660–5. doi: 10.1074/jbc.M501338200
28. Lechauve C, Rezaei H, Celier C, et al. Neuroglobin and prion cellular localization: investigation of a potential interaction. J Mol Biol. 2009; 388 (5): 968–77. doi: 10.1016/j.jmb.2009.03.047
29. Shi SY, Feng XM, Li Y, Li X, Chen XL. Expression of neuroglobin in ocular hypertension induced acute hypoxic-ischemic retinal injury in rats. Int J Ophthalmol. 2011; 4 (4): 393–5. doi: 10.3980/j.issn.2222-3959.2011.04.14
30. Yu ZL, Qiu S, Chen XC, et al. Neuroglobin — a potential biological marker of retinal damage induced by LED light. Neuroscience. 2014; 13; 270: 158–67. doi: 10.1016/j.neuroscience.2014.04.013
31. Tao Y, Ma Z, Liu B, et al. Hemin supports the survival of photoreceptors injured by N-Methyl-N-nitrosourea: The contributory role of neuroglobin in photoreceptor degeneration. Brain Res. 2018; 1678: 47–55. doi: 10.1016/j.brainres.2017.10.007
32. Luu JC, Saadane A, Leinonen H, et al. Stress resilience-enhancing drugs preserve tissue structure and function in degenerating retina via phosphodiesterase inhibition. Proc Natl Acad Sci USA. 2023; 120 (19): e2221045120. doi: 10.1073/pnas.2221045120
33. Wang K, Liu H, Hu Q, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022; 7 (1): 374. doi: 10.1038/s41392-022-01211-8
34. Hahn O, Grönke S, Stubbs TM, et al. Dietary restriction protects from ageassociated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 2017; 18: 56. doi: 10.1186/s13059-017-1187-1
35. Cerletti M, Jang YC, Finley LW, Haigis MC, Wagers AJ. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell. 2012; 10: 515–9. doi: 10.1016/j.stem.2012.04.002
36. Redman LM, Smith SR, Burton JH, et al. Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell Metab. 2018; 27: 805–15.e804. doi: 10.1016/j.cmet.2018.02.019
37. Dorling JL, Ravussin E, Redman LM, et al. Effect of 2 years of calorie restriction on liver biomarkers: results from the CALERIE phase 2 randomized controlled trial. Eur J Nutr. 2021; 60: 1633–43. doi: 10.1007/s00394-020-02361-7
38. Ogasawara R, Akimoto T, Umeno T, et al. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics. 2016; 48 (4): 320–4. doi: 10.1152/physiolgenomics.00124.2015
39. van Praag H, Shubert T, Zhao C, Gage FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005; 25 (38): 8680–5. doi: 10.1523/JNEUROSCI.1731-05.2005
40. Rubenstein AB, Hinkley JM, Nair VD, et al. Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. Am J Physiol Endocrinol Metab. 2022; 322: E260–e277. doi:10.1152/ajpendo.00378.2021
41. Ruple BA, Godwin JS, Mesquita PHC, et al. Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. FASEB J. 2021; 35:e21864. doi: 10.1096/fj.202100873RR
42. Blocquiaux S, Ramaekers M, Van Thienen R, et al. Recurrent training rejuvenates and enhances transcriptome and methylome responses in young and older human muscle. JCSM Rapid Commun. 2022; 5: 10–32. doi: 10.1002/rco2.52
43. Acosta-Rodríguez VA, Rijo-Ferreira F, Green CB, Takahashi JS. Importance of circadian timing for aging and longevity. Nat Commun. 2021; 12: 2862. doi: 10.1038/s41467-021-22922-6
44. Hor CN, Yeung J, Jan M, et al. Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. Proc Natl Acad Sci USA. 2019; 116 (51): 25773–83. doi: 10.1073/pnas.1910590116
45. Weaver DR. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms. 1998;13: 100–12. doi: 10.1177/074873098128999952
46. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012; 35: 445–62. doi:10.1146/annurev-neuro-060909-153128
47. Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci USA. 2014; 111: 16219–24. doi: 10.1073/pnas.1408886111
48. Evans JA, Davidson AJ. Health consequences of circadian disruption in humans and animal models. Prog Mol Biol Transl Sci. 2013; 119: 283–323. doi:10.1016/B978-0-12-396971-2.00010-5
49. Davidson AJ, Sellix MT, Daniel J, et al. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006; 16: R914–16. doi: 10.1016/j.cub.2006.09.058
50. Palomba M, Nygård M, Florenzano F, et al. Decline of the presynaptic network, including GABAergic terminals, in the aging suprachiasmatic nucleus of the mouse. J Biol Rhythms. 2008; 23 (3): 220–31. doi: 10.1177/0748730408316998
51. Nakamura TJ, Nakamura W, Yamazaki S, et al. Age-related decline in circadian output. J Neurosci. 2011; 31 (28): 10201–5. doi: 10.1523/JNEUROSCI.0451-11.2011
52. Farajnia S, Michel S, Deboer T, et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci. 2012; 32 (17): 5891–9. doi: 10.1523/JNEUROSCI.0469-12.2012
53. Zhou JN, Hofman MA, Swaab DF. VIP neurons in the human СХЯ in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging. 1995; 16: 571–76. doi:10.1016/0197-4580(95)00043-e
54. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005; 8 (4): 476–83. doi: 10.1038/nn1419
55. Aton SJ, Huettner JE, Straume M, Herzog ED. GABA and Gi/o differentially control circadian rhythms and synchrony in clock neurons. Proc Natl Acad Sci USA. 2006; 103 (50): 19188–93. doi: 10.1073/pnas.0607466103
56. Wang JL, Lim AS, Chiang WY, et al. Suprachiasmatic neuron numbers and restactivity circadian rhythms in older humans. Ann Neurol. 2015; 78 (2): 317–22. doi: 10.1002/ana.24432
57. Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2012; 13: 325–35. doi:10.1038/nrn3208
58. Lananna BV, Musiek ES. The wrinkling of time: Aging, inflammation, oxidative stress, and the circadian clock in neurodegeneration. Neurobiol Dis. 2020; 139: 104832. doi: 10.1016/j.nbd.2020.104832
59. Hood S, Amir S. The aging clock: circadian rhythms and later life. J Clin Invest. 2017; 127: 437–46. doi:10.1172/jci90328
60. Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol. 2019; 18: 307–18. doi:10.1016/s1474-4422(18)30461-7
61. Zueva M.V., Kotelin V.I., Neroeva N.V., Fadeev D.V., Manko O.M. Problems and prospects of new methods of light stimulation in visual rehabilitation. Sensory systems. 2023; 37(2): 93–118 (In Russ.). https://sciencejournals.ru/cgi/getPDF.pl?jid=sensis&year=2023&vol=37&iss=2&file=SenSis2302007Zueva.pdf
62. Lipsitz LA, Goldberger AL. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992 Apr 1; 267 (13): 1806–9. PMID: 1482430.
63. Teich MC, Heneghan C, Lowen SB, Ozaki T, Kaplan E. Fractal character of the neural spike train in the visual system of the cat. J Opt Soc Am. 1997; 14 (3): 529–46. doi:10.1364/josaa.14.000529
64. Goldberger AL. Fractal variability versus pathologic periodicity: complexity loss and stereotypy in disease. Perspect Biol Med. 1997; 40: 543–61. doi: 10.1353/pbm.1997.0063
65. Goldberger AL, Giles F. Filley Lecture. Complex Systems. Proc Am Thorac Soc. 2006; 3: 467–72. doi: 10.1513/pats.200603-028MS
66. Manor B, Lipsitz LA. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 45: 287–93. doi: 10.1016/j.pnpbp.2012.08.020
67. Zueva MV. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scaleinvariance and fractal complexity of the visible world. Front Aging Neurosci. 2015; 7: 135. doi: 10.3389/fnagi.2015.00135
68. Neroev V.V., Zueva M.V., Manakhov P.A., et al. Method for improving the functional activity of the visual system using fractal phototherapy using a stereoscopic display. Patent RU 277 36 84 C1, Bulletin 19, 2022 (In Russ.).
69. Zueva M.V., ed. Nonlinear eye: New technologies of visual rehabilitation. St. Petersburg, BMM Publishing House, 2024 (In Russ.).
70. Fadeev D.V., Neroeva N.V., Zueva M.V., et al. Fractal phototherapy: impact on the structure and function of the retina of rabbits with modelled retinal pigment epithelium atrophy. Russian ophthalmological journal. 2024; 17 (2): 74–81 (In Russ.). https://doi.org/10.21516/2072-0076-2024-17-2-74-81
71. Neroeva N.V., Zueva M.V., Kotelin V.I., et al. Influence of fractal photostimulation on electroretinogram in patients with dry age-related macular degeneration. Russian ophthalmological journal. 2025; 18 (2): 80–9 (In Russ.). https://doi.org/10.21516/2072-0076-2025-18-2-80-89
72. Pascual-Leone A, Freitas C, Oberman L, et al. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topogr. 2011; 24: 302–15. https://doi.org/10.1007/s10548-011-0196-8
Review
For citations:
Zueva M.V., Kotelin V.I., Neroeva N.V. Geroprotective technologies in the prevention and modifying treatment of age-associated retinal diseases. Russian Ophthalmological Journal. 2025;18(4):169-177. (In Russ.) https://doi.org/10.21516/2072-0076-2025-18-4-169-177


























