Preview

Russian Ophthalmological Journal

Advanced search

Biomechanics of the corneoscleral shell and hemodynamics of the glaucomatous eye: is there a connection?

https://doi.org/10.21516/2072-0076-2019-12-1-10-17

Abstract

Purpose. To find the connection between the parameters of the corneoscleral shell and lamina cribrosa (LC) and hemodynamic parameters of the eyes with primary open angle glaucoma (POAG). Materials and methods. The study involved 111 eyes of 63 patients, including 41 eyes without ophthalmic pathology (control group, mean age M ± SD 66.9 ± 18.2 yrs), 22 eyes with the initial glaucoma stage (group 1, mean age 65.9 ± 11.3 yrs), 31 eyes with the developed glaucoma stage (group 2, mean age 69.2 ± 17.3 yrs), and 17 eyes with the advanced glaucoma stage (group 3, mean age 69,7 ± 7.3 yrs). LC parameters and the density of surface (SVL) and deep (DVL) vascular layers were measured using Spectralis OCT2 with an angiography module (Heidelberg Engineering, Germany) in the enhanced deep imaging (EDI) mode using AngioTool software. Corneal hysteresis (CH) and corneal resistance factor (CRF) were determined using ORA (Ocular Response Analyzer, Reichert, USA). The rigidity coefficient (E) of the corneoscleral shell was measured by a GlauTest-60 tonograph (Russia) operation in the differential tonometry mode. The elasticity coefficient (s) was determined by a modified differential tonometry technique. The rheographic index (RI) and pulse blood volume (PBV) were measured using transpalpebral rheoophthalmography. Results. A statistically significant correlation was revealed between CH and SVL (р = 0.005, r = 0.288), LC thickness and SVL and DVL (р = 0.001, r = 0.374 and р = 0.003, r = 0.397, respectively). A negative statistically significant correlation was found between E and RI (р = 0.000, r = -0.538) as well as between E and PBV (р = 0.001, r = -0.376). A similar correlation was revealed between s and theses parameters (RI and PBV; р = 0.027, r = -0.404 and р = 0.024, r = -0.410, respectively). E increase is accompanied by a decrease in the SVL density (р = 0.000, r = -0.376); besides, PBV is negatively correlated with the LC depth (р = 0.022, r = -0.257). Conclusion. In POAG, deteriorated blood supply of inner ocular shells (decreased RI, PBV, SVL and DVL density) correlates with (a) increased corneoscleral rigidity (manifested in the increase of rigidity and elasticity coefficients, and the decrease of CH), and (b) decreased LC thickness and its increased depth. Increased rigidity of the corneoscleral shell contributes to an LC posterior displacement. It must be concluded that LC thickness is a more sensitive biomechanical parameter that changes even in the initial stages of POAG and has a high diagnostic value.

About the Authors

E. N. Iomdina
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Biol. Sci., Professor, principal researcher, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia

 



O. A. Kiseleva
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., head of the glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



A. M. Bessmertny
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., senior researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



D. D. Khoziev
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Ph.D. student, glaucoma department1

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



P. V. Luzhnov
Bauman Moscow State Technical University
Russian Federation

Cand. Tech. Sci, assistant professor, chair of medical and technical information technologies

5/1, 2nd Baumanskaya St., Moscow, 105005, Russia



D. M. Shamaev
“ATES MEDICA SOFT”
Russian Federation

Cand. Tech. Sci, leading researcher

1 Bldg., 1, Bagrationovsky Proezd, Moscow, 121087, Russia



I. N. Moiseeva
Institute of Mechanics, Lomonosov Moscow State University
Russian Federation

Cand. Phys.-Math. Sci., senior researcher

1, Michurinsky prospect, Moscow, 119192, Russia



A. A. Stein
Institute of Mechanics, Lomonosov Moscow State University
Russian Federation

Cand. Phys.-Math. Sci., leading researcher

1, Michurinsky prospect, Moscow, 119192, Russia



References

1. Nesterov A.P., Egorov E.A. Glaucomatous optic nerve atrophy. Moscow: Medicine; 1981. (in Russian).

2. Egorov E. A., Astakhov Y. S., Erichev V. P. National guidance of glaucoma. 3rd edition. Moscow: GEOTAR-Media; 2015. (in Russian).

3. Fechtner R.D, Weinreb R.N. Mechanisms of optic nerve damage in primary open angle glaucoma. Surv. Ophthalmol. 1994; 39(1): 23-42.

4. Flammer J., Orgul S., Costa V.P, et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002; 21: 359-93.

5. Hayreh S.S. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br. J. Ophthalmol. 1969; 53: 721-748.

6. Kurysheva N.I., Parshunina O.A., Shatalova E.O., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye. Res. 2017; 42 (3): 411-417. doi: 10.1080/02713683.2016.1184281.

7. Schmetterer L. Ocular perfusion abnormalities in glaucoma. Russian Ophthalmological Journal, 2015; 4: 100-9.

8. Kurysheva N.I., Maslova E.V. Optical coherence tomography angiography in glaucoma diagnosis. Vestnik oftalmologii. 2016; 132(5): 98-102. doi: 10.17116/oftalma2016132598-102 (in Russian).

9. Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmology. 2015; 133(9): 1045. doi: 10.1001/jamaophthalmol.2015.2225

10. Iomdina E.N., Bauer S.M., Kotliar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow: Real Time; 2015. (in Russian).

11. Sigal I.A., Ethier C.R. Biomechanics of the optic nerve head. Exp. Eye. Res. 2009; 88: 799-807. doi: 10.1016/j.exer.2009.02.003

12. Iomdina E. N., Arutyunyan L.L., Katargina L.A., et al. Interrelation of corneal hysteresis and structural and functional parameters of the optic nerve at different stages of primary open-angle glaucoma. Russian ophthalmological journal. 2009; 2(2): 17-23. (in Russian).

13. Iomdina E. N., Kiseleva O. A., Moiseeva I. N. et al. Biomechanical criteria for assessing the risk of progression of primary open-angle glaucoma. Sovremennye tekhnologii v medicine. 2016; 9(4): 59-63. doi: 10.17691/stm2016.8.4.08. (in Russian)

14. Strakhov V. V., Alekseev V. V. Pathogenesis of primary glaucoma - all or nothing. Glauсoma. 2009; 2:40-52. (in Russian).

15. Iomdina E. N., Ignatieva N. Y., Danilov N. A., et al. Biochemical and structural- biomechanical characteristics of the matrix of the sclera of a human with primary open-angle glaucoma. Vestnik oftal'mologi. 2011; 6: 10-4. (in Russian).

16. Quigley H.A. Glaucoma: macrocosm to microcosm, the Friedenwald lecture. Invest. Ophthalmol. Vis. Sci. 2005; 46: 2662-70. doi: 10,1167 / iovs.04-1070

17. Strouthidis N.G., Girard M.J. Altering the way, the optic nerve head responds to intraocular pressure - a potential approach to glaucoma therapy. Curr. Opin. Pharmacol. 2013; 13: 83-89. doi: 10.1016 / j.coph.2012.09.001

18. Quigley H.A., Addicks E.M. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch. Ophthalmol. 1981; 99: 137-43.

19. Kiseleva O.A., Iomdina E. N., Yakubova L. V., Khoziev D. D. Lamina cribrosa in glaucoma: biomechanical features and possibilities of their clinical control. Russian ophthalmological journal. 2018; 11(3): 76-83. doi: 10.21516/2072-0076-2018-11-3-76-83 (in Russian).

20. Lee E.J., Kim T.W., Kim M. et al. Recent structural alteration of the peripheral lamina cribrosa near the location of disc hemorrhage in glaucoma. Invest. Ophthalmol. Vis. Sci. 2014; 55(4): 2805–15. doi: 10.1167/iovs.13-12742.

21. Min Hee Suh, Zangwill L. M., Manalastas P.I.C. et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016 Nov; 123(11): 2309-17. doi: 10.1016/j.ophtha.2016.07.023

22. Hommer A., Fuchsjäger-Mayrl G., Resch H. et al. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest. Ophthal. Vis.Sci. 2008; 49: 4046-50. doi: 10.1167 / iovs.07-1342

23. Sinivas S., Dastiridou A., Durbin M.K. et al. Pilot study of lamina cribrosa intensity measurements in glaucoma using Swept-Source Optical Coherence Tomography. J. Glaucoma. 2017; 26(2 Feb.): 138-43. doi: 10.1097 / IJG.0000000000000605

24. Jia Y., Wei E., Wang X. et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121: 1322-1332. doi: 10.1016/j.ophtha.2014.01.021

25. Yarmohammadi A., Zangwill L.M., Diniz-Filho A. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis. Sci. 2016; 57: OCT 451-9. doi: 10.1167/iovs.15-18944

26. Luzhnov P.V., Shamaev D.M., Iomdina E.N. et al. Transpalpebral tetrapolar rheoophthalmography in the problems of estimation of parameters of the circulatory system of the eye. Vestnik RAMN. 2015; 70(3): 372-7. (in Russian).

27. Kleyman A.P., Kiseleva O.A., Iomdina E. N. Early diagnosis of primary open-angle glaucoma using transpalpebral rheoophthalmography. Meditsinskij vestnik Bashkortostana. 2017; 12, 2 (68): 88-91. (in Russian).

28. Kiseleva O.A., Iomdina E.N., Lyubimov G.A. et al. Assessment of the risk of progression of glaucoma based on biomechanical parameters of the corneoscleral membrane of the eye. RMZH. Klinicheskaya oftal'mologiya. 2016; 4: 177-81. doi: 10.21689/2311-7729-2016-16-4-177-181 16 (in Russian).

29. Luzhnov P.V., Shamaev D.M., Kiseleva A.A, et al. Analyzing rheoophthalmic signals in glaucoma by nonlinear dynamics methods. World Congress on Medical Physics and Biomedical Engineering. IFMBE Proceedings, 2018; 68(2): 827-31.

30. Furlanetto R.L., Park S.C., Damle U.J, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest. Ophthalmol. Vis. Sci. 2013; 54(7): 4836-42. doi:10.1167/iovs.12-11530

31. Park H.Y., Park C.K. Diagnostic capability of lamina cribrosa thickness by enhanced depth imaging and factors affecting thickness in patients with glaucoma. Ophthalmology. 2013; 120(4): 745-52. doi:10.1016/j.ophtha.2012.09.051


Review

For citations:


Iomdina E.N., Kiseleva O.A., Bessmertny A.M., Khoziev D.D., Luzhnov P.V., Shamaev D.M., Moiseeva I.N., Stein A.A. Biomechanics of the corneoscleral shell and hemodynamics of the glaucomatous eye: is there a connection? Russian Ophthalmological Journal. 2019;12(1):10-17. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-1-10-17

Views: 1107


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)