Preview

Russian Ophthalmological Journal

Advanced search

Limbal stem cell deficiency: etiology, pathogenesis, priniciples and prospects of surgical treatment

https://doi.org/10.21516/2072-0076-2019-12-1-103-111

Abstract

The review is focused on the modern view of the etiology and pathogenesis of limbal stem cells deficiency. The history of development of tissue and ex-vivo transplantation of limbal epithelial stem cells is presented. Certain promising directions of the treatment of patients with limbal stem cells deficiency are presented.

About the Authors

A. S. Dubovikov
S.M. Kirov Military Medical Academy
Russian Federation

resident

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



I. O. Gavrilyuk
S.M. Kirov Military Medical Academy
Russian Federation

ophthalmologist

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



A. N. Kulikov
S.M. Kirov Military Medical Academy
Russian Federation

Dr. Med. Sci., head of the chair of ophthalmology

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



S. V. Churashov
S.M. Kirov Military Medical Academy
Russian Federation

Dr. Med. Sci., assistant professor of the chair of ophthalmology

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



V. F. Chernysh
S.M. Kirov Military Medical Academy
Russian Federation

Cand. Med. Sci., assistant professor of the chair of ophthalmology

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



A. V. Bezushko
S.M. Kirov Military Medical Academy
Russian Federation

ophthalmologist

6, Akademika Lebedeva St., St. Petersburg, 194044, Russia



References

1. World Health Organization. Global data on visual impairments 2010. WHO; 2012: 3–4.

2. Burman S., Tejwani S., Vemuganti G.K., et al. Ophthalmic application of preserved human amniotic membrane: a review of current indications. Cell Tissue Banking. 2004; 5: 161–75. https://doi.org/10.1023/B:CATB.0000046067.25057.0a

3. Nakamura T., Inatomi T., Sotozono C., Koizumi N., Kinoshita S. Ocular surface reconstruction using stem cell and tissue engineering. Prog. Retin. Eye Res. 2016; 51: 187–207. doi:10.1016/j.preteyeres.2015.07.003

4. Holland E.J. Management of limbal stem cell deficiency: a historical perspective, past, present, and future. Cornea. 2015; 34: 9–15. doi:10.1097/ICO.0000000000000534

5. Sitnik G.V. Modern cellular biotechnology in ophthalmology. Amniotic membrane as a substrate for the cultivation of stem epithelial cells. Belorus. Med. Zhurnal. 2005; 3: 13–6 (in Russian).

6. Chernysh V.F., Boyko E.V., Shishkin M.M. Limbital transplantation in the treatment and visual rehabilitation of patients with severe chemical eye burns. Vestnik oftal'mologii. 2004; 120 (2): 8–11 (in Russian).

7. Dua H.S., Saini J.S., Azuara-Blanco A., Gupta P. Limbal stem cell deficiency: Concept, aetiology, clinical presentation, diagnosis and management. Indian J. Ophthalmol. 2000; 48: 83–92. PMID: 11116520.

8. Grueterich M. Ex Vivo Expansion of Limbal Epithelial Stem Cell: Amniotic Membrane Serving as a Stem Cell Niche. Surv. Ophthalmol. 2003; 48 (6): 631–46. doi: https://doi.org/10.1016/j.survophthal.2003.08.003

9. Hazlett L.D. Epithelial desquamation in the adult mouse cornea: A correlative TEM-SEM study. Ophthalmic Res. 1980; 12: 315. doi:10.1159/000265095

10. Lavker R. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp. Eye Res. 2004; 78: 433–46. doi:10.1016/j.exer.2003.09.008

11. Chernysh V.F., Boyko E.V. Eye burns: the condition of the problem and new approaches. Sankt Petersburg: VMedA; 2008 (in Russian).

12. Holland E.J., Schwarz G. The evolution of epithelial transplantation for severe ocular surface disease and a proposed classification system. Cornea. 1996; 15: 549–56. PMID: 8899265.

13. Daya S.M., Chan C.C., Holland E.J. Cornea Society nomenclature for ocular surface rehabilitative procedures. Cornea. 2011; 30 (10): 1115–9.

14. Thoft R.A. Keratoepithelioplasty. Am. J. Ophthalmol. 1984; 97: 1–6. PMID: 6364814.

15. Kenyon K.R., Tseng S.C. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989; 96: 709–22. doi: https://doi.org/10.1016/S0161-6420(89)32833-8

16. Tsai R.J.F., Tseng S.C. Human allograft limbal transplantation for corneal surface reconstruction. Cornea. 1994; 13: 389–400.

17. Holland E.J. Epithelial transplantation for the management of severe ocular disease. Trans Am. Ophthalmol. Soc. 1996; 94: 677–743. PMID: 8981714 PMCID: PMC1312113.

18. Biber J.M., Skeens H.M., Neff K.D., Holland E.J. The Сincinnati procedure: technique and outcomes of combined living-related conjunctival limbal allografts and keratolimbal allografts in severe ocular surface failure. Cornea. 2011; 30: 765–71. doi: 10.1097/ICO.0b013e318201467c

19. Solomon A. Long-term outcome of keratolimbal allograft with or without penetrating keratoplasty for total limbal stem cell deficiency. Ophthalmology. 2002; 109: 1159–66. https://doi.org/10.1016/ S0161-6420(02)00960-0

20. Rheinwald J.G. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975; 6: 331–43. https://doi.org/10.1016/S0092-8674(75)80001-8

21. Green H. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Nat. Acad. Sci. USA. 1979; 76 (11): 5665–8. PMID: 293669.

22. Todaro G.J., Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. The Journal of cell biology; 1963; 17 (2): 299–313. doi:10.1083/jcb.17.2.299

23. Subhashini S. Screening of antibacterial and cytotoxic activity of extracts from epidermis and epidermal mucus of Barbonymus schwanenfeldii (Tinfoil barb fish). Int J. Res. Engin. Technol. 2013; 2 (4): 492–7.

24. Sun T.T. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977; 269 (5628): 489–93. doi:10.1038/269489a0

25. Pellegrini G., Traverso C.E., Franzi A.T., et al. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997; 349: 990–3. doi: 10.1016/S0140-6736(96)11188-0

26. Sugiyama H., Maeda K., Yamato M., et al. Human adipose tissuederived mesenchymal stem cells as a novel feeder layer for epithelial cells. J. Tissue Eng. Regen. Med. 2008; 2: 445–9. doi: 10.1002/term.111

27. Omoto M., Miyashita H., Shimmura S., et al. The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest. Ophthalmol. 2009; 50: 2109–15. PMID: 19136703 doi: 10.1167/iovs.08-2262

28. Oie Y., Hayashi R., Takagi R., et al. A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. Br. J. Ophthalmol. 2010; 94: 1244–50. doi: 10.1136/bjo.2009.175042

29. Nakamura T., Ang L.P., Rigby H., et al. The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Invest. Ophthalmol. 2006; 47: 909–16. PMID: 16505023 doi: 10.1167/iovs.05-1188

30. Miyashita H., Yokoo S., Yoshida S., et al. Long-term maintenance of limbal epithelial progenitor cells using rho kinase inhibitor and keratinocyte growth factor. Stem Cells Transl. Med. 2013; 2: 758–65. doi: 10.5966/sctm.2012-0156

31. Friend J. Corneal epithelial cell cultures on stromal. Invest. Ophthalmol. 1982; 23: 41–9.

32. Tsai R.J., Li L.M., Chen J.K. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N. Engl. J. Med; 2000. 343: 86–93. doi:10.1056/NEJM200007133430202 33. Koizumi N., Fullwood N.J., Bairaktaris G., et al. Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest. Ophthalmol. Vis. Sci. 2000; 41 (9): 2506–13. PMID: 10937561.

33. Koizumi N., Inatomi T., Suzuki T., Sotozono C., Kinoshita S. Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology. 2001; 108 (9): 1569–74. doi: https://doi.org/10.1016/S0161-6420(01)00694-7

34. Boyko E.V., Chernysh V.F., Abramova I.A. On the use of the amniotic membrane for the purpose of conjunctival plasty in the experiment. Oftal'mokhirurgiya. 2004; 3: 8–12 (in Russian).

35. Endo K. Human amniotic membrane, like corneal epithelial basement membrane, manifests the alpha-5 chain of type IV collagen. Invest. Ophthalmol. 2004; 45: 1771–4. doi:10.1167/iovs.03-0952

36. Solomon A., Rosenblatt M., Monroy D. Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br. J. Ophthalmol. 2001; 85: 444–9. PMID: 11264135.

37. Rama P., Bonini S., Lambiase A., et al. Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001; 72: 1478–85. doi: 10.1097/00007890-200111150-00002

38. Nishida K., Yamato M., Hayashida Y., et al. Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation. 2004; 77: 379–85. doi: 10.1097/01. TP.0000110320.45678.30

39. Dravida S., Gaddipati S., Griffith M., et al. A biomimetic scaffold for culturing limbalstem cells: a promising alternative for clinical transplantation. J. Tissue Eng. Regen. Med. 2008; 2: 263–71. doi: 10.1002/term.91

40. Francis D. Myogel supports the exvivo amplification of corneal epithelial cells. Exp. Eye Res. 2009; 88: 339–46. doi: 10.1016/j.exer.2008.06.016

41. Reichl S. Keratin films for ocular surface reconstruction. Biomaterials. 2011; 32: 3375–86. doi: 10.1016/j.biomaterials.2011.01.052

42. Grolik M., Szczubialka K., Wowra B., et al. Hydrogel membranes based on genipincross-linked chitosan blends for corneal epithelium tissue engineering. J. Mater Sci. Mater Med. 2012; 23: 1991–2000. doi:10.1007/s10856-012-4666-7

43. Di Girolamo N., Bosch M., Zamora K., et al. Watson Transplantation. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. 2009; 87 (10): 1571–8. doi: 10.1097/TP.0b013e3181a4bbf2

44. Sharma S., Mohanty S., Gupta D., et al. Cellular response of limbal epithelial cells on electrospun poly-epsilon-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol. Vis. 2011; 17: 2898–910. PMID: 22128237.

45. Ortega I., Ryan A.J., Deshpande P., et al. Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater. 2013; 9: 5511–20. doi: 10.1016/j.actbio.2012.10.039

46. Rheinwald J.G., Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975; 6: 331–43. doi: https://doi.org/10.1016/S0092-8674(75)80001-8

47. Nakamura T., Inatomi T., Sotozono C., et al. Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmol. Scand. 2004; 82: 468–71. https://doi.org/10.1111/j.1395-3907.2004.00285.x

48. Rama P., Matuska S., Paganoni G. Limbal stem-cell therapy and long-term corneal regeneration. N. Engl. J. Med. 2010; 363: 147–55. doi: 10.1056/NEJMoa0905955

49. Schwab I.R., Reyes M., Isseroff R.R. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000; 19: 421–6. PMID: 10928750

50. Khlopin N.G. General biology and experimental basis of histology. Leningrad: Izd-vo AN SSSR; 1946 (in Russian).

51. Nakamura T., Kinoshita S. Ocular surface reconstruction using cultivated mucosal epithelial stem cells. Cornea. 2003; 22: 75–80. PMID: 14703711.

52. Nishida K., Yamato M., Hayashida Y., et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N. Engl. J. Med. 2004; 351: 1187–96. doi: 10.1056/NEJMoa040455

53. Denig R. Eine chirurgische Behandlung f r Kalkverletzungen des Auges. Munch. Med. Wochenschr. 1912; 12: 579–80.

54. Denig R. Circumcorneal transplantation of buccal mucous membrane as a curative measure in diseases of the eye. Arch Ophthalmol. 1929; 1: 351–7. doi:10.1001/archopht.1929.00810010367007

55. Ballen P.H. Mucous membrane grafts in chemical (lye) burns. Am. J. Ophthalmol. 1963; 55: 302–12.

56. Gipson I.K., Geggel H.S., Spurr-Michaud S.J. Transplant of oral mucosal epithelium to rabbit ocular surface wounds in vivo. Arch. Ophthalmol. 1986; 104: 1529–33. doi:10.1001/archopht.1986.01050220123039

57. Sotozono C., Inatomi T., Nakamura T., et al. Visual improvement after cultivated oral mucosal epithelial transplantation. Ophthalmology. 2013; 120: 193–200. doi: 10.1016/j.ophtha.2012.07.053


Review

For citations:


Dubovikov A.S., Gavrilyuk I.O., Kulikov A.N., Churashov S.V., Chernysh V.F., Bezushko A.V. Limbal stem cell deficiency: etiology, pathogenesis, priniciples and prospects of surgical treatment. Russian Ophthalmological Journal. 2019;12(1):103-111. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-1-103-111

Views: 2523


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)