Pathogenesis and clinical features of congenital stationary night blindness in case of c.283delC NYX gene mutation
https://doi.org/10.21516/2072-0076-2019-12-3-77-84
Abstract
About the Authors
M. E. IvanovaRussian Federation
Cand. Med. Sci, head
47/3-3, Leningradsky Prospekt, Moscow, 125167
K. V. Gorgisheli
Russian Federation
MD, geneticist
8, Bldg. 5, Podolskoye Hgwy, Moscow, 115093
I. V. Zolnikova
Russian Federation
Dr. Med.Sci, senior researcher, S.V. Kravkov department of clinical physiology of vision
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
D. S. Atarshchikov
Russian Federation
Cand. Med. Sci., ophtalmologist
15, Marshala Timoshenko St. Moscow, 121359
D. Barh
India
PhD (Biology), head
560032, Nonakuri, Purba Medinipur, West Bengal
Zh. M. Salmasi
Russian Federation
Dr. Med. Sci, Professor, chair of clinical pathophysiology
1, Ostrovityanova St. , Moscow, 117513
L. M. Balashova
Russian Federation
Dr. Med.Sci, Professor, head
29/14, Prechistenka St., Moscow, 119034
References
1. Zeitz C., Robson A.G., Audo I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. Prog. Retin. Eye Res. 2015; 45: 58–110. doi: 10.1016/j.preteyeres.2014.09.001
2. Boycott K.M., Sauvé Y., MacDonald I.M. X-Linked Congenital Stationary Night Blindness. In: Adam M.P., Ardinger H.H., Pagon R.A., et al. (Eds). GeneReviews® [Internet]. 2012; Seattle (WA): University of Washington, Seattle.
3. Bech-Hansen N.T., Naylor M.J., Maybaum T.A., et al. Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat. Genet. 2000; 26 (3): 319–23. doi: 10.1038/81619
4. Yip S.P., Li C.C., Yiu W.C., et al. A novel missense mutation in the NYX gene associated with high myopia. Ophthalmic Physiol Opt. 2013; 33 (3): 346–53. doi: 10.1111/opo.12036
5. Pearring J.N., Bojang P. Jr., Shen Y., et al. A role for nyctalopin, a small leucine-rich repeat protein, in localizing the TRP melastatin 1 channel to retinal depolarizing bipolar cell dendrites. J Neurosci. 2011; 31 (27): 10060–66. doi: 10.1523/JNEUROSCI.1014-11.2011
6. Khan N.W., Kondo M., Hiriyanna K.T., et al. Primate retinal signalling pathways: suppressing ON-pathway activity in monkey with glutamate analogues mimics human CSNB1-NYX genetic night blindness. J. Neurophysiol. 2005; 93 (1): 481–92. doi: 10.1152/jn.00365.2004
7. Gregg R.G., Kamermans M., Klooster J., et al. Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J. Neurophysiol. 2007; 98 (5): 3023–33. doi: 10.1152/jn.00608.2007
8. McKenna A., Hanna M., Banks E., et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010; 20 (9): 1297–303. doi: 10.1101/gr.107524.110
9. Engelhardt K.R., Xu Y., Grainger A., et al. Identification of heterozygous single- and multi-exon deletions in IL7R by whole exome sequencing. J. Clin. Immunol. 2017; 37 (1): 42–50. doi: 10.1007/s10875-016-0343-9
10. Ivanova M.E., Trubilin V.N., Atarshchikov D.S., et al. Genetic screening of Russian Usher syndrome patients toward selection for gene therapy. Ophthalmic. Genet. 2018; 39 (6): 706–13. doi: 10.1080/13816810.2018.1532527
11. Löytynoja A., Goldman N. webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics. 2010; 11: 579. doi: 10.1186/1471-2105-11-579
12. Marchler-Bauer A., Bo Y., Han L., et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017; 45 (D1): D200-D203. doi: 10.1093/nar/gkw1129
13. Kelley L.A., Mezulis S., Yates C.M., et al. The Phyre2 web portal for protein modelling, prediction and analysis. Nat. Protoc. 2015; 10 (6): 845–58. doi: 10.1038/nprot.2015.053
14. Malaichamy S., Sen P., Sachidanandam R., et al. Molecular profiling of complete congenital stationary night blindness: a pilot study on an Indian cohort. Mol. Vis. 2014; 20: 341–51.
15. Leroy B.P., Budde B.S., Wittmer M., et al. A common NYX mutation in Flemish patients with X linked CSNB. Br. J. Ophthalmol. 2009; 93 (5): 692–6. doi: 10.1136/bjo.2008.143727
16. Dai S., Ying M., Wang K., et al. Two novel NYX gene mutations in the chinese families with X-linked congenital stationary night blindness. Sci Rep. 2015; 5: 12679. doi: 10.1038/ srep12679
17. Scalabrino M.L., Boye S.L., Fransen K.M., et al. Intravitreal delivery of a novel AAV vector targets ON bipolar cells and restores visual function in a mouse model of complete congenital stationary night blindness. Hum. Mol. Genet. 2015; 24 (21): 6229–39. doi: 10.1093/ hmg/ddv341
18. Xu C.L., Cho G.Y., Sengillo J.D., et al. Translation of CRISPR genome surgery to the bedside for retinal diseases. Front. Cell Dev. Biol. 2018;6:46. doi: 10.3389/fcell.2018.00046
Review
For citations:
Ivanova M.E., Gorgisheli K.V., Zolnikova I.V., Atarshchikov D.S., Barh D., Salmasi Zh.M., Balashova L.M. Pathogenesis and clinical features of congenital stationary night blindness in case of c.283delC NYX gene mutation. Russian Ophthalmological Journal. 2019;12(3):77-84. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-3-77-84