Preview

Russian Ophthalmological Journal

Advanced search

Personalized medicine in glaucoma management

https://doi.org/10.21516/2072-0076-2019-12-3-95-100

Abstract

The review addresses the management of primary glaucoma as a socially significant multifactorial disease. The main reasons that impede the timely diagnosis and treatment of patients with glaucoma are indicated: blurring of boundaries, conventionality of standards, and lack of individualized approach to treatment. The main risk factors for the development of glaucoma are highlighted, with special attention to hereditary predisposition and the role of “medicine of the future” in managing glaucoma. Four fundamental principles are described: personalization, prediction, prevention and participative attitude (P4 medicine). Advanced scientific understanding of the key risk factors for the development and progression of glaucoma, together with a modern personalized and personified approach will further develop precise individual strategies for the prevention and treatment of the disease.

About the Authors

A. N. Zhuravleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

 Cand. Med. Sci., researcher, glaucoma department 

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



O. A. Kiseleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Dr. Med. Sci., head, glaucoma department 

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



M. O. Kirillova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Ph.D. student, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Tham Y.C., Li X., Wong T.V., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014; 121: 2081–90.

2. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006; 90: 262–7.

3. Sotimehin A.E., Ramulu P.Y. Measuring Disability in Glaucoma. J Glaucoma. 2018 Nov; 27 (11): 939–49. doi: 10.1097/ IJG.0000000000001068

4. Nesterov A.P. Glauсoma. Moscow: Medinform; 2008 (in Russian).

5. V.V., Kiseleva O.A., Bessmertny A.M. The main results of a multicenter study of epidemiological features of primary open-angle glaucoma in the Russian Federation. Russian ophthalmological journal. 2013; 6 (3): 4–7 (in Russian).

6. Leite M.T., Rao H.L., Zangwill L.M., Weinreb R.N., Medeiros F.A. Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma. Ophthalmology. 2011; 118: 1331339. http://doi.org/10.1016/j. ophtha.2010.11.029

7. Kim J.S., Ishikawa H., Gabriele M.L., et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest. Ophthalmol. Vis. Sci. 2010; 5: 896–902. doi 10.1167/iovs.09-4110

8. Park S.B., Sung K.R., Kang S.Y., Kim K.R., Kook M.S. Comparison of glaucoma diagnostic capabilities of cirrus HD and stratus optical coherence tomography. Arch. Ophthalmol. 2009; 127: 1603–9. https://doi.org/10.1001/archophthalmol.2009.296

9. Medeiros F.A., Zangwill L.M., Bowd C., et al. Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 2005; 139: 44–55. doi: 10.1016/j.ajo.2004.08.069

10. Kuang T.M., Zhang C., Zangwill L.M., Weinreb R.N., Medeiros F.A. Estimating the lead time gained by optical coherence tomography in detecting glaucoma before development of visual field defects. Ophthalmology. 2015; 122 (10): 2002–9. doi:10.1016/j. ophtha.2015.06.015

11. Siesky B., Harris A., Amireskandari A., Marek B. Glaucoma and ocular blood flow: an anatomical perspective. Expert Rev. Ophthalmol. 2012; 7 (4): 325–40. https://doi.org/10.1586/eop.12.41

12. Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V., Lagutin M.B. Conventional evoked potentials and their relationship with the peripapillary and retrobulbar blood flow in glaucoma. Vestnik oftal'mologii. 2018; 134 (3): 19–27 (in Russian). https://doi. org/10.17116/oftalma2018134319

13. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121: 1322–32. doi: 10.1016/j.ophtha.2014.01.021

14. Jonas J., Harazny J., Budde W.M., et al. Optic disc morphometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J. Glaucoma. 2003; 12: 260–5.

15. Hafez A.S., Bizzarro R.L., Lesk M.R. Evaluation of optic nerve head and peripapillary retinal blood flow in glaucoma patients, ocular hypertensives, and normal subjects. Am. J. Ophthalmol. 2003; 136 (6): 1022–31. doi:10.1016/s0002-9394(03)00632-9

16. Deokule S., Vizzeri G., Boehm A., Bowd C., Weinreb R.N. Association of visual field severity and parapapillary retinal blood flow in open angle glaucoma. J. Glaucoma. 2010; 19 (5): 293–8. doi: 10.1097/ ijg.0b013e3181b6e5b9

17. Plange N., Kaup M., Weber A., Arend K., Remky A. Retrobulbar haemodynamics and morphometric optic disc analysis in primary open-angle glaucoma. Br. J. Ophthalmol. 2006; 90 (12): 1501–4. doi: 10.1136/ bjo.2006.099853

18. Logan J.F., Rankin S.J., Jackson A.J. Retinal blood flow measurements and neuroretinal rim damage in glaucoma. Br. J. Ophthalmol. 2004; 88 (8): 1049–54. doi: 10.1136/bjo.2003.034884

19. Kromer R., Glusa P., Framme C., Pielen A., Junker B. Optical coherence tomography angiography analysis of macular flow density in glaucoma. Acta Ophthalmol. 2019; 97 (2): 199–206. doi: 10.1111/ aos.13914

20. Weinreb R.N., Friedman D.S., Fechtner R.D., et al. Risk assessment in the management of patients with ocular hypertension. Am. J. Ophthalmol. 2004; 138 (3 Sep.): 458–67.

21. Fuse N. Genetic bases for glaucoma. Tohoku J. Exp. Med. 2010; 221: 1–10.

22. Raymond V. Molecular genetics of the glaucomas: mapping of the first five “GLC” loci. Am. J. Hum. Genet. 1997; 60: 272–7.

23. Sarfarazi M. Recent advances in molecular genetics of glaucomas. Hum. Mol. Genet. 1997; 6: 1667–77.

24. Wolfs R.C., Klaver C.C., Ramrattan R.S., et al. Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study. Arch. Ophthalmol. 1998; 116: 1640–5.

25. Green C.M., Kearns L.S., Wu J., et al. How significant is a family history of glaucoma? Experience from the Glaucoma Inheritance Study in Tasmania. Clin. Exp. Ophthalmol. 2007; 35 (9): 793–9. doi: 10.1111/j.1442-9071.2007.01612.x

26. Volkov V.V. Glaucoma in pseudonormal intraocular pressure. Moscow: Meditsina; 2001 (in Russian).

27. Xu X., Xiao H., Guo X., et al. Diagnostic ability of macular ganglion cell inner plexiform layer thickness in glaucoma suspects. Medicine. 2017; 96: 51 (e9182). doi: 10.1097/MD.0000000000009182

28. Chung H.S., Harris A., Halter P.J. Regional differences in retinal vascular reactivity. Invest. Ophthalmol. Vis. Sci. 1999; 40 (10): 2448–53.

29. Schmidl D., Garhofer G., Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp. Eye Res. 2011; 93 (2): 141–55. doi: 10.1016/j. exer.2010.09.002

30. Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252-e266. doi: 10.1111/ aos.12298

31. Glovinsky Y., Quigley H.A., Dunkelberger G.R. Retinal ganglion cell loss is size dependent in experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 1991; 32 (3): 484–91.

32. Goldberg I. Relationship between intraocular pressure and preservation of visual field in glaucoma. Surv. Ophthalmol. 2003; 48: 3–7. 33. Hayreh S.S. Blood flow in the optic head and factors that may influence it. Prog. Retin. Eye Res. 2001; 20 (5): 595–624.

33. Grieshaber M.C., Flammer J. Blood flow in glaucoma. Curr. Opin. Ophthalmol. 2005; 16: 79–83.

34. Rusia D., Harris A., Pernic A., et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls (Review). Br. J. Ophthalmol. 2010; 95 (9): 1193–8.

35. Hwang J., Konduru R., Zhang X., et al. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest. Ophthalmol. Vis. Sci. 2012; 53: 3020–6.

36. Wang Y., Bower D., Izatt J., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 2008; 13 (6): 064003. doi: 10.1117/1.2998480

37. Zhuravleva A.N., Neroev V.V., Andreeva L.D. The study of scleral fibronectin in primary open-angle glaucoma (immunohistochemical study). Vestnik oftal'mologii. 2009; 125 (3): 12–5 (in Russian).

38. Izhevskaya V.L., Kiseleva O.A., Zhuravleva A.N., Khalilov Sh.A. Polymorphisms of collagen genes I and III types and their connection with the development of POAG. Genetika. 2013; 12 (6): 3–11 (in Russian).

39. Sennova L.G. A retrospective analysis of the role of connective tissue in the pathogenesis of glaucoma. National Journal glaucoma. 2018; 17 (1): 113–6 (in Russian). https://doi.org/10.25700/NJG.2018.01.11

40. Zhuravleva A.N., Andreeva L.D., Neroev V.V. Collagen theory of aging and the genetic code in the pathogenesis of glaucoma. Klinicheskaya gerontologiya. 2009; 15 (8–9): 78 (in Russian).

41. Iomdina E.N., Bauer S.M., Kotliar K.E. Eye biomechanics: theoretical aspects and clinical applications. Moscow: Real Time; 2015 (in Russian).

42. Girard M.J., Suh J.-K., Bottlang F.M., et al. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP. Invest. Ophthalmol. Vis. Sci. 2011; 52: 5656–69.

43. Kadurina T.I., Gorbunova V.N. Connective tissue dysplasia. Guidelines for physicians. Sankt Petersburg: Elbu-SPb; 2009 (in Russian).

44. Astakhov Yu.S., Rakhmanov V.V. Heredity and glaucoma. Oftal'mologicheskie vedomosti. 2012; 4 (4): 51–7 (in Russian).

45. Kubota R., Noda S., Wang Y., et al. A novel myosin-like protein (myocilin) expressed in the connecting cilium of the photoreceptor: molecular cloning, tissue expression, and chromosomal mapping. Genomics. 1997; 41 (3): 360–9.

46. Stone E.M., Fingert J.H., Alward W.L., et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997; 275 (5300): 668–70.

47. Porciatti V., Ventura L.M. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J. Neuroophthalmol. 2012; 32 (4): 354–8. doi: 10.1097/WNO.0b013e3182745600

48. Zueva M.V. Dynamics of retinal ganglion cell death in glaucoma and its functional markers. National journal glaucoma. 2016; 15 (1): 70–85 (in Russian).

49. Morgan J.E. Retina ganglion cell degeneration in glaucoma: an opportunity missed? A review. Clin. Exp. Ophthalmol. 2012; 40: 364–8. doi: 10.1111/j.1442-9071.2012.02789.x

50. Chan I.S., Ginsburg G.S. Personalized medicine: progress and promise. Annu Rev Genomics Hum Genet 2011; 12: 217–44. doi: 10.1146/ annurev-genom-082410-101446

51. Scudellari M. Genomics contest underscores challenges of personalized medicine. Nat. Med. 2012; 18 (3): 326. https://doi. org/10.1038/nm0312-326

52. Johnson A.D., O’Donnell C.J. An open access database of genome wide association results. BMC Med. Genet. 2009; 10: 6. doi: 10.1186/14712350-10-6

53. Archakov A., Aseev A., Bykov V., et al. Gene-centric view on the human proteome project: the example of the Russian roadmap for chromosome 18. Proteomics. 2011; 11 (10): 1853–6. doi: 10.1002/ pmic.201000540


Review

For citations:


Zhuravleva A.N., Kiseleva O.A., Kirillova M.O. Personalized medicine in glaucoma management. Russian Ophthalmological Journal. 2019;12(3):95-100. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-3-95-100

Views: 1162


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)