Analysis of the circadian rhythm of intraocular pressure in stable and progressive forms of primary open-angle glaucoma
https://doi.org/10.21516/2072-0076-2019-12-4-35-42
Abstract
Purpose. To analyze the daily dynamics and the parameters of intraocular pressure circadian rhythm (IOP CR) in patients with primary open-angle glaucoma (POAG) (stable and progressive forms) and determine chronobiological regularities of glaucoma progression depending on the patterns of restructuring the daily dynamics of IOP CR and body temperature.
Material and methods. The study included 75 POAG patients, of which 35 had a stable form (S-POAG) and 40 had a rapidly progressing form (P-POAG). The control group was composed of 80 subjects without POAG. The index of retinal ganglion cell loss measured by optical coherence tomography (OCT) was used as a criterion of POAG progression. IOP was measured by the patients themselves for 72 hours at 7 time points (3 am, 8 am, 11 am, 2 pm, 5 pm, 8 pm, and 11 pm, who used an Icare ONE portable intraocular pressure tonometer for individual use.
Results. IOP daily dynamics was distributed differently in the different groups. In S-POAG, the peak values were mainly reached in the morning hours, while the minimum values were observed at night. In P-POAG, the peak values of IOP were contrariwise recorded at night. In both POAG groups, an increase of irregular fluctuation share was noted, which indicated a decrease of the CR contribution to the IOP CR. Moreover, in POAG, a change in the phase ratio between the IOP CR and CR of body temperature was observed. For IOP CR phase violation manifestations, the threshold value of GCS global loss index was determined at 10–15 % according to OCT data.
Conclusion. IOP daily dynamics were shown to differ in S-POAG and P-POAG patients. In both groups. Signs of desynchronization were detected. The ganglion retinal cell global loss index can be used to determine phase disturbances of IOP CR.
About the Authors
T. N. MalishevskayaRussian Federation
Dr. of Med. Sci., ophthalmologist
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia
D. G. Gubin
Russian Federation
Dr. of Med. Sci., Professor
54, Odesskaya St., Tyumen, 625023, Russia
I. V. Nemcova
Russian Federation
ophthalmologist
118/1, Kholodilnaja St., Tyumen, 625048, Russia
A. S. Vlasova
Russian Federation
ophthalmologist
118/1, Kholodilnaja St., Tyumen, 625048, Russia
Ju. E. Filippova
Russian Federation
ophthalmologist
118/1, Kholodilnaja St., Tyumen, 625048, Russia
E. E. Farikova
Russian Federation
ophthalmologist
6-8, L'va Tolstogo St., St. Petersburg, 197022, Russia
D. S. Bogdanova
Russian Federation
6th year student
54, Odesskaya St., Tyumen, 625023, Russia
References
1. Flaxman S.R., Bourne R.R.A., Resnikoff S., et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob. Health. 2017; 5 (12): e1221–е1234. doi: 10.1016/S2214-109X(17)30393-5
2. Saccà S.C., Corazza P., Gandolfi S., et al. Substances of interest that support glaucoma therapy. nutrients. 2019; 11 (2): 239. doi.org/10.3390/nu11020239
3. Gibson E.M., Williams W. P., Kriegsfeld L.J. Aging in the circadian system: considerations for health, disease prevention and-longevity. Experimental Gerontology. 2009; 44 (1–2): 51-6. doi.org/10.1016/j.exger.2008.05.007
4. Kripke D.F., Elliott J.A., Youngstedt S.D., Rex K.M. Circadian phase response curves to light in older and young women and men. Journal of Circadian Rhythms. 2007; 5: 4. doi.org/10.1186/1740-3391-5-4
5. Drouyer E., Dkhissi-Benyahya O., Chiquet C., et al. Glaucoma alters the circadian timing system. PLoS ONE. 2008; 3 (12): e3931. doi.org/10.1371/journal.pone.0003931
6. Girardin J-L., Zizi F., Lazzaro D.R., Wolintz A.H. Circadian rhythm dysfunction in glaucoma: A hypothesis. Journal of Circadian Rhythms. 2008; 6 (0): 1. doi.org/10.1186/1740-3391-6-1
7. Lusthaus J.A., Goldberg I. Investigational and experimental drugs for intraocular pressure reduction in ocular hypertension and glaucoma. Expert Opin. Invest. Drugs. 2016; 25 (10): 1201-8. doi.org/10.1080/13543784.2016.1223042
8. Guy A.H., Wiggs J.L., Turalba A., Pasquale L.R. Translating the low translaminar cribrosa pressure gradient hypothesis into the clinical care of glaucoma. Seminars in Ophthalmology. 2016; 31 (1–2): 131–9. doi.org/10.3109/08820538.2015.1114855
9. Астахов Ю.С., Устинова Е.И., Катинас Г.С. и др. О традиционных и современных способах исследования колебаний офтальмотонуса. Офтальмологические ведомости. 2008; 1 (2): 7–12. Astakhov Yu.S., Ustinova E.I., Katinas G.S., et al. On traditional and modern methods of ophthalmotonus fluctuations investigation. Otal'mologicheskie vedomosti. 2008; 1 (2): 7–12 (in Russian).
10. Aptel F., Weinreb R.N., Chiquet C., Mansouri K. 24-h monitoring devices and nyctohemeral rhythms of intraocular pressure. Progress in Retinal and Eye Research. 2016; 55: 108–48. doi.org/10.1016/j.preteyeres.2016.07.002
11. Caprioli J., Coleman A.L. Intraocular pressure fluctuation. Ophthalmology. 2008; 115 (7): 1123–9.e3. doi.org/10.1016/j.ophtha.2007.10.031
12. Agnifili L., Mastropasqua R., Frezzotti P., et al. Circadian intraocular pressure patterns in healthy subjects, primary open angle and normal tension glaucoma patients with a contact lens sensor. Acta Ophthalmologica. 2015; 93 (1): e14-е21. doi.org/10.1111/aos.12408
13. Tan S., Baig N., Hansapinyo L., et al. Comparison of selfmeasured diurnal intraocular pressure profiles using rebound tonometry between primary angle closure glaucoma and primary open angle glaucoma patients. PLOS ONE. 2017; 12 (3): e0173905. doi.org/10.1371/journal.pone.0173905
14. Itoh Y., Nakamoto K., Horiguchi H., et al. Twenty-four-hour variation of intraocular pressure in primary open-angle glaucoma treated with triple eye drop. J. of Ophthalmol. 2017; 2017: 1–6. doi.org/10.1155/2017/4398494
15. Lozano D.C., Hartwick A.T., Twa M.D. Circadian rhythm of intraocular pressure in the adult rat. Chronobiology International. 2015; 32 (4): 513–23. doi.org/10.3109/07420528.2015.1008135
16. Aptel F., Aryal-Charles N., Giraud J.M., et al. Progression of visual field in patients with primary open-angle glaucoma – ProgF study 1. Acta Ophthalmol. 2015; 93 (8): e615–20. doi.org/10.1111/aos.12788
17. Bussel I.I., Wollstein G., Schuman J.S. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br. J. Ophthal. 2014; 98 (Suppl2): ii15–ii19. doi.org/10.1136/bjophthalmol-2013-304326
18. Gubin D.G., Gubin G.D., Waterhouse J., Weinert D. The circadian body temperature rhythm in the elderly: Effect of single daily melatonin dosing. Chronobiology International. 2006; 23 (3): 639–58. doi.org/10.1080/07420520600650612
19. Gubin D., Cornelissen G., Weinert D., et al. Circadian disruption and Vascular Variability Disorders (VVD): mechanisms linking aging, disease state and Arctic shiftwork: applications for chronotherapy. World Heart Journal. 2013; 5 (4): 285–306.
20. Gubin D., Weinert D. Deterioration of temporal order and circadian disruption with age 2: Systemic mechanisms of aging-related circadian disruption and approaches to its correction. Advances in Gerontology. 2016; 6 (1): 10–20. doi.org/10.1134/s2079057016010057
21. Gubin D.G., Weinert D., Rybina S.V., et al. Activity, sleep and ambient light have a different impact on circadian blood pressure, heart rate and body temperature rhythms. Chronobiology International. 2017; 34 (5):632–49. doi.org/10.1080/07420528.2017.1288632
22. Göz D., Studholme K., Lappi D.A., et al. Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE. 2008; 3 (9):e3153. doi.org/10.1371/journal.pone.0003153
23. Feigl B., Mattes D., Thomas R., Zele A.J. Intrinsically photosensitive (melanopsin) retinal ganglion cell function in glaucoma. Invest. Opthalmol. Vis. Sci. 2011; 52 (7): 4362. doi.org/10.3724/sp.j.1260.2011.00387
24. Guo Z.-Z., Jiang S.-M., Zeng L.-P., et al. ipRGCs: possible causation accounts for the higher prevalence of sleep disorders in glaucoma patients. Int. J. of Ophthalmol. 2017; 10 (7): 1163–7. doi.org/10.18240/ijo.2017.07.22
25. Lax P., Esquiva G., Fuentes-Broto L., et al. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiology International. 2016; 33 (4): 374–91. doi.org/10.3109/07420528.2016.1151025
26. Vaze K.M., Sharma V.K. On the adaptive significance of circadian clocks for their owners. Chronobiology International. 2013; 30 (4): 413–33. doi.org/10.3109/07420528.2012.754457
27. Агаджанян Н.А., Губин Д.Г. Десинхроноз: механизмы развития от молекулярно-генетического до системного уровня. Успехи физиологических наук. 2004; 35 (2): 57–72. Agadjanyan N.A., Gubin D.G. Desynchronization: mechanisms of development from molecular to systemic levels. Uspekhi fiziologicheskikh nauk. 2004; 35 (2): 57–72 (in Russian).
Review
For citations:
Malishevskaya T.N., Gubin D.G., Nemcova I.V., Vlasova A.S., Filippova J.E., Farikova E.E., Bogdanova D.S. Analysis of the circadian rhythm of intraocular pressure in stable and progressive forms of primary open-angle glaucoma. Russian Ophthalmological Journal. 2019;12(4):35-42. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-4-35-42