Preview

Russian Ophthalmological Journal

Advanced search

Epidemiologic, clinical and pathogenesis features of achromatopsia in the Russian population

https://doi.org/10.21516/2072-0076-2020-13-1-12-22

Abstract

Achromatopsia (ACHM) is a rare autosomal recessive disease. Its mutation spectrum is well described in other populations, but the data on ACHM prevalence and features in Russia are insufficient. Purpose. To describe clinically and genetically the Russian cohort of AHCM for the potential use of targeted treatment approaches, including gene therapy. Material and methods. Out of 18 patients with clinical manifestations of ACHM, 10 patients were chosen (6 with no kinship relatedness and 4 with kinship relatedness) aged 12.3 ± 5.8 years. These patients underwent standard ophthalmologic examination: visometry, perimetry, biomicroscopy, ophthalmoscopy, as well as optical coherence tomography, electroretinography, and color test on distinguishing color shades, in order to determine the clinical characteristics of ACHM. Molecular genetic confirmation of the clinical diagnosis was performed by high-performance parallel DNA sequencing. An in silico analysis of pathogenetic pathways of the clinical picture in 10 patients with confirmed ACHM was performed. Results. In the examined Russian patients, previously determined mutations in the CNGA3 and CNGB3 genes were confirmed. The most common mutation was a single nucleotide deletion with a reading frame shift in the 10th exon of the CNGB3 gene; a missense mutation in the 8th exon of the CNGA3 gene was second frequent. One patient had mutations in the CNGA3 and CNGB3 genes. Segregation analysis confirms the autosomal recessive nature of disease inheritance. Mutations in the CNGB3 gene have been observed to lead to more serious clinical manifestations than mutations in CNGA3. Conclusions. The analysis of the Russian ACHM cohort shows that mutations in the CNGA3 and CNGB3 genes are the main cause of the development of the disease. A complete molecular genetic confirmation of the clinical diagnosis has been obtained, which is necessary for prescribing targeted treatment to patients, including gene therapy.

About the Authors

M. E. Ivanova
CRO Oftalmic
Russian Federation

Marianna E. Ivanova - Cand. of Med. Sci., head

47/3-3, Leningradsky Prospekt, Moscow, 125167



I. V. Zolnikova
Helmholtz Research Centre of Eye Diseases
Russian Federation

Inna V. Zolnikova - Dr. of Med. Sci., senior research assistant

14/19, Sadovaya-Chernogryazskaya St., 105062, Moscow



I. E. Khatsenko
Morozov children clinical hospital
Russian Federation

Igor E. Khatsenko - Cand. of Med. Sci., ophthalmologist

1/9, Bldg. 1А, 4th Dobryninsky pereulok, Moscow, 119049



V. V. Strelnikov
Research Centre for Medical Genetics
Russian Federation

Vladimir V. Strelnikov - Dr. of Biol. Sci., head of epigenetics laboratory

1, Moskvorechye St., Moscow, 115478



F. A. Konovalov
Laboratory of clinical bioinformatics
Russian Federation

Fedor A. Konovalov - Cand. of Biol. Sci., head

21, Bldg. 1, Marshala Katukova St., Moscow, 123181



E. R. Lozier
Laboratory of clinical bioinformatics
Russian Federation

Ekaterina R. Lozier - Cand. of Med. Sci., clinical bioinformatician

21, Bldg. 1, Marshala Katukova St., Moscow, 123181



M. A. Ampleeva
Center of Strategic Planning and Medical Risk Management
Russian Federation

Maria A. Ampleeva - clinical bioinformatician

10, Bldg. 1, Pogodinskaya St., Moscow, 119121



A. V. Antonets
Genomed laboratory
Russian Federation

Anna V. Antonets - Cand. of Med. Sci., genetician

8, Bldg. 5, Podolskoye shosse, Moscow, 115093



I. V. Kanivets
Genomed laboratory
Russian Federation

Ilya V. Kanivets - Cand. of Med. Sci., genetician

8, Bldg. 5, Podolskoye shosse, Moscow, 115093



K. V. Gorgisheli
Genomed laboratory
Russian Federation

Ketevan V. Gorgisheli - Cand. of Med. Sci., genetician

8, Bldg. 5, Podolskoye shosse, Moscow, 115093



D. S. Atarshchikov
Central Clinical Hospital at President Affairs’ Administration
Russian Federation

Dmitry S. Atarshchikov - Cand. of Med. Sci., ophthalmologist

15, Marshala Timoshenko St., Moscow, 121359



D. V. Pyankov
Genomed laboratory
Russian Federation

Denis V. Pyankov - Cand. of Med. Sci., head of laboratory

8, Bldg. 5, Podolskoye shosse, Moscow, 115093



S. A. Korostelev
Genomed laboratory
Russian Federation

Sergei A. Korostelev - Dr. of Med. Sci., deputy director of science

8, Bldg. 5, Podolskoye shosse, Moscow, 115093



E. B. Kuznetsova
First Moscow State Sechenov Medical University
Russian Federation

Ekaterina B. Kuznetsova - Cand. of Biol. Sci., research assistant of Laboratory of medical genetics

8, Bldg. 2, Trubetskaya St., Moscow, 119048



D. Bar
Institute of Integrative Omics and Applied Biotechnology (IIOAB)
India

Debmala Bar - Dr. of Biol. Sci., head

560032 Nonakuri, Purba Medinipur, West Bengal, 721172



L. M. Balashova
International Scientific and Practical Center for the Proliferation of Tissues of Russia
Russian Federation

Larisa M. Balashova - Dr. of Med. Sci., Professor, head

29/14, Prechistenka St., Moscow, 119034



Zh. M. Salmasi
Russian National Pirogov Research Medical University
Russian Federation

Zhean M. Salmasi - Dr. of Med. Sci., Professor

1, Ostrovityanova St., Moscow, 117513



References

1. Hirji N., Aboshiha J., Georgiou M., Bainbridge J., Michaelides M. Achromatopsia: clinical features, molecular genetics, animal models and therapeutic options. Ophthalmic Genet. 2018; 39 (2 Apr.): 149–57. doi: 10.1080/13816810.2017.1418389

2. Biel M., Michalakis S. Function and dysfunction of CNG channels: insights from channelopathies and mouse models. Mol. Neurobiol. 2007; 35 (3 Jun.): 266–77.

3. Remmer M.H., Rastogi N., Ranka M.P., Ceisler E.J. Achromatopsia: a review. Curr. Opin. Ophthalmol. 2015; 26 (5 Jul.): 333–40. DOI: 10.1097/ICU.0000000000000189

4. Ansar M., Santos-Cortez R.L., Saqib M.A., et al. Mutation of ATF6 causes autosomal recessive achromatopsia. Hum. Genet. 2015; 134 (9 Sep.): 941–50. doi: 10.1007/s00439-015-1571-4

5. Kohl S., Zobor D., Chiang W.C., et al. Mutations in the unfolded protein response regulator ATF6 cause the cone dysfunction disorder achromatopsia. Nat. Genet. 2015; 47 (7 Jul.): 757–65. doi: 10.1038/ng.3319

6. Morton N.E., Lew R., Hussels I.E., Little G.F. Pingelap and Mokil Atolls: historical genetics. Am. J. Hum. Genet. 1972; 24 (3 May): 277–89. PMID 4537352

7. Winick J.D., Blundell M.L., Galke B.L., et al. Homozygosity mapping of the Achromatopsia locus in the Pingelapese. Am. J. Hum. Genet. 1999; 64 (6 Jun.): 1679–85. doi: 10.1086/302423

8. Norn M. Prevalence of congenital colour blindness among Inuit in East Greenland. Acta Ophthalmol. Scand. 1997; 75 (2 Apr.): 206–9. PMID 9197574

9. Thiadens A.A., Slingerland N.W., Roosing S., et al. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Ophthalmology. 2009; 116 (10 Oct.): e 1984-9. doi: 10.1016/j.ophtha.2009.03.053

10. Kohl S., Varsanyi B., Antunes G.A., et al. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Eur. J. Hum. Genet. 2005; 13 (3 Mar.): 302–8. doi: 10.1038/sj.ejhg.5201269

11. Zelinger L., Cideciyan A.V., Kohl S., et al. Genetics and disease expression in the CNGA3 form of achromatopsia: steps on the path to gene therapy. Ophthalmology. 2015; 122 (5 May): 997–1007. doi: 10.1016/j.ophtha.2014.11.025

12. Grau T., Artemyev N.O., Rosenberg T., et al. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia. Hum. Mol. Genet. 2011; 20 (4): 719–30. doi: 10.1093/hmg/ddq517

13. Kohl S., Jägle H., Wissinger B., Zobor D. Achromatopsia. In: Adam M.P., Ardinger H.H., Pagon R.A., et al., eds. GeneReviews. [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2019. 2004 Jun 24 [updated 2018 Sep 20]. PMID 20301591

14. Wiszniewski W., Lewis R.A., Lupski J.R. Achromatopsia: the CNGB3 p.T383fsX mutation results from a founder effect and is responsible for the visual phenotype in the original report of uniparental disomy 14. Hum. Genet. 2007; 121 (3–4 May): 433–9. doi: 10.1007/s00439-006-0314-y

15. Eksandh L., Kohl S., Wissinger B. Clinical features of achromatopsia in Swedish patients with defined genotypes. Ophthalmic Genet. 2002; 23 (2 Jun.): 109–20. PMID 12187429

16. Varsányi B., Wissinger B., Kohl S., Koeppen K., Farkas A. Clinical and genetic features of Hungarian achromatopsia patients. Mol. Vis. 2005; 11 (17 Nov.): 996–1001. PMID 16319819

17. Liang X., Dong F., Li H., et al. Novel CNGA3 mutations in Chinese patients with achromatopsia. Br. J. Ophthalmol. 2015; 99 (4 Apr.): 571–6. doi: 10.1136/bjophthalmol-2014-305432

18. Wawrocka A., Kohl S., Baumann B., et al. Five novel CNGB3 gene mutations in Polish patients with achromatopsia. Mol. Vis. 2014; 20 (23 Dec.): 1732–9. PMID 25558176

19. Mayer A.K., Van Cauwenbergh C., Rother C., et al. ACHM Study Group. CNGB3 mutation spectrum including copy number variations in 552 achromatopsia patients. Hum. Mutat. 2017; 38 (11 Nov.): 1579–91. doi: 10.1002/humu.23311

20. Ouechtati F., Merdassi A., Bouyacoub Y., et al. Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene. J. Hum. Genet. 2011; 56 (1): 22–8. doi: 10.1038/jhg.2010.128

21. Michalakis S., Schön C., Becirovic E., Biel M. Gene therapy for achromatopsia. J. Gene Med. 2017; 19 (3 Mar.). doi: 10.1002/jgm.2944

22. Zolnikova I.V., Strelnikov V.V., Skvortsova N.A., et al. Stargardt disease-associated mutation spectrum of a Russian Federation cohort. Eur. J. Med. Genet. 2017; 60 (2 Feb.): 140–7. doi: 10.1016/j.ejmg.2016.12.002

23. Shamshinova A.M., Zolnikova I.V. Dysfunctions and dystrophies of cone retinal system. In: Inherited and congenital disorders of retina and optic nerve. Moscow: Meditsina; 2001: 173–208 (in Russian).

24. Shamshinova A.M., Zolnikova I.V. Molecular genetics of inherited dysfunctions of cone and rod systems. Medical genetics. 2004; 5: 202–9 (in Russian).

25. Landrum M.J., Lee J.M., Benson M., et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016; 44 (D1): D862–8. doi: 10.1093/nar/gkv1222

26. Adzhubei I.A., Schmidt S., Peshkin L., et al. A method and server for predicting damaging missense mutations. Nat. Methods. 2010; 7 (4 Apr.): 248–9. doi: 10.1038/nmeth0410-248

27. Kumar P., Henikoff S., Ng P.C. Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009; 4 (7): 1073–81. doi: 10.1038/nprot.2009.86

28. Richards S., Aziz N., Bale S., et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17 (5 May): 405–24. doi: 10.1038/gim.2015.30

29. Li S., Huang L., Xiao X., et al. Identification of CNGA3 mutations in 46 families: common cause of achromatopsia and cone-rod dystrophies in Chinese patients. JAMA Ophthalmol. 2014; 132 (9 Sep.): 1076–83. doi: 10.1001/jamaophthalmol.2014.1032

30. Khan N.W., Wissinger B., Kohl S., Sieving P.A. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Invest. Ophthalmol. Vis. Sci. 2007; 48 (8 Aug.): 3864–71. doi: 10.1167/iovs.06-1521

31. Zobor D., Werner A., Stanzial F., et al. RD-CURE Consortium. The Clinical phenotype of CNGA3-related achromatopsia: pretreatment characterization in preparation of a gene replacement therapy trial. Invest. Ophthalmol. Vis. Sci. 2017; 58 (2): 821–32. doi: 10.1167/iovs.16-20427

32. Koeppen K., Reuter P., Ladewig T., et al. Dissecting the pathogenic mechanisms of mutations in the pore region of the human cone photoreceptor cyclic nucleotide-gated channel. Hum. Mutat. 2010; 31 (7 Jul.): 830–9. doi: 10.1002/humu.21283

33. Wissinger B., Gamer D., Jägle H., et al. CNGA3 mutations in hereditary cone photoreceptor disorders. Am. J. Hum. Genet. 2001; 69 (4 Oct.): 722–37. doi: 10.1086/323613

34. Johnson S., Michaelides M., Aligianis I.A., et al. Achromatopsia caused by novel mutations in both CNGA3 and CNGB3. J. Med. Genet. 2004; 41 (2 Feb.): e20.

35. Chen X.T., Huang H., Chen Y.H., et al. Achromatopsia caused by novel missense mutations in the CNGA3 gene. Int. J. Ophthalmol. 2015; 8 (5): 910–5. doi: 10.3980/j.issn.2222-3959.2015.05.10

36. Hassall M.M., Barnard A.R., MacLaren R.E. Gene therapy for color blindness. Yale J. Biol. Med. 2017; 90 (4): 543–51.

37. Kubo S., Takagi-Kimura M., Tagawa M., Kasahara N. Dual-vector prodrug activator gene therapy using retroviral replicating vectors. Cancer Gene Ther. 2019; 26 (5–6 May): 128–35. doi: 10.1038/s41417-018-0051-0


Review

For citations:


Ivanova M.E., Zolnikova I.V., Khatsenko I.E., Strelnikov V.V., Konovalov F.A., Lozier E.R., Ampleeva M.A., Antonets A.V., Kanivets I.V., Gorgisheli K.V., Atarshchikov D.S., Pyankov D.V., Korostelev S.A., Kuznetsova E.B., Bar D., Balashova L.M., Salmasi Zh.M. Epidemiologic, clinical and pathogenesis features of achromatopsia in the Russian population. Russian Ophthalmological Journal. 2020;13(1):12-22. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-1-12-22

Views: 1332


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)