Пластичность сетчатки при ретинопатии недоношенных и перспективы фототерапии
https://doi.org/10.21516/2072-0076-2020-13-1-77-84
Аннотация
Об авторах
М. В. ЗуеваРоссия
Марина Владимировна Зуева – д-р биол. наук, профессор, начальник отдела клинической физиологии зрения им. С.В. Кравкова.
ул. Садовая-Черногрязская, д. 14/19, Москва, 105062
Л. В. Коголева
Россия
Людмила Викторовна Коголева – д-р мед. наук, руководитель детского консультативно-поликлинического отделения.
ул. Садовая-Черногрязская, д. 14/19, Москва, 105062
Л. А. Катаргина
Россия
Людмила Анатольевна Катаргина – д-р мед. наук, профессор, заместитель директора по научной работе, начальник отдела патологии глаз у детей.
ул. Садовая-Черногрязская, д. 14/19, Москва, 105062
Список литературы
1. Катаргина Л.А. Ретинопатия недоношенных, современное состояние проблемы и задачи организации офтальмологической помощи недоношенным детям в РФ. Российская педиатрическая офтальмология. 2012; (1): 5–7.
2. Gilbert C. Retinopathy of prematurity: a global perspective of the epidemics, population of babies at risk and implications for control. Early Hum. Dev. 2008; 84: 77–2. doi: 10.1016/j.earlhumdev.2007.11.009.
3. Сайдашева Э.И., Буяновская С.В., Ковшов Ф.В. Ретинопатия недоношенных у детей со сроком гестации менее 27 недель: особенности течения и результаты лазерного лечения. Российская педиатрическая офтальмология. 2014; 9 (4): 48–9.
4. Smith L.E. Pathogenesis of retinopathy of prematurity. Growth Horm. IGF Res. 2004; 14 (Suppl A): S140-S144. doi:10.1016/j.ghir.2004.03.030
5. Quinn G.E., Gilbert C., Darlow B.A., Zin A. Retinopathy of prematurity: an epidemic in the making. Chin. Med. J. (Engl). 2010; 123: 2929–37. doi: 10.3760/cma.j.issn.0366-6999.2010.20.033
6. Natoli R., Valter K., Barbosa M., et al. 670 nm photobiomodulation as a novel protection against retinopathy of prematurity: evidence from oxygen induced retinopathy models. PLoS ONE. 2013; 8 (8): e72135. doi: 10.1371/journal.pone.0072135
7. An International Committee for the Classification of retinopathy of prematurity. The international classification of ROP – Revisited. Arch. Ophthalmol. 2005; 123: 991–9. doi:10.1001/archopht.123.7.991
8. Christiansen S.P., Dobson V., Quinn G., et al. Progression of type 2 to type 1 retinopathy of prematurity in the early treatment for retinopathy of prematurity study. Arch. Ophthalmol. 2010; 128 (4): 461–5. doi: 10.1001/archophthalmol.2010.34
9. Early Treatment for Retinopathy of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 2003; 121: 1684–94. doi: 10.1001/archopht.121.12.1684
10. Ng E.Y., Connolly B.P., McNamara J.A., et al. A comparison of laser photocoagulation with cryotherapy for threshold retinopathy of prematurity at 10 years: part 1. Visual function and structural outcome. Ophthalmology. 2002; 109 (5): 928–34.
11. McCloskey M., Wang H., Jiang Y., et al. Anti-VEGF antibody leads to later atypical intravitreous neovascularization and activation of angiogenic pathways in a rat model of ROP. Invest. Ophthalmol. Vis. Sci. 2013; 54: 2020–6. doi: 10.1167/iovs.13-11625
12. O’Connor A.R., Stephenson T.J., Johnson A., et al. Strabismus in children of birth weight less than 1701 g. Arch. Ophthalmol. 2002; 120: 767–73. doi:10.1001/archopht.120.6.767
13. Terasaki H., Hirose T. Late-onset retinal detachment associated with regressed retinopathy of prematurity. Jap. J. Ophthalmol. 2003; 47 (5): 492–7. doi:10.1016/s0021-5155(03)00088-1
14. Larsson E., Martin L., Holmström G. Peripheral and central visual fields in 11-year-old children who had been born prematurely and at term. J. Pediatr. Ophthalmol. Strabismus. 2004; 41: 39–45. https://doi.org/10.3928/0191-3913-20040101-10
15. Tufail A., Singh A.J., Haynes R.J., et al. Late onset vitreoretinal complications of regressed retinopathy of prematurity. Br. J. Ophthalmol. 2004; 88 (2): 243–6. http://dx.doi.org/10.1136/bjo.2003.022962
16. Larsson E., Rydberg A., Holmström G. Contrast sensitivity in 10 year old preterm and full term children: a population based study. Br. J. Ophthalmol. 2006; 90: 87–90. doi:10.1136/bjo.2005.081653
17. Wu W.C., Lin R. I., Shin C.P. Visual acuity, optical components, and macular abnormalities in patients with a history of prematurity. Ophthalmology. 2012; 119: 1907–16. doi: 10.1016/j.ophtha.2012.02.040
18. Катаргина Л.А., Белова М.А., Коголева Л.В. Вторичные ретинальные дистрофии у детей с ретинопатией недоношенных. Российская педиатрическая офтальмология. 2014; (3): 62.
19. Коголева Л.В., Катаргина Л.А., Рудницкая Я.Л. Структурнофункциональное состояние макулы у детей с ретинопатией недоношенных. Вестник офтальмологии. 2011; 127 (6): 25–9.
20. Коголева Л.В., Рогова С.Ю. Нарушения полей зрения у пациентов с ретинопатией недоношенных. Российская педиатрическая офтальмология. 2014; 9 (4): 24.
21. Fielder A., Blencowe H., O’Connor A., Gilbert C. Impact of retinopathy of prematurity on ocular structures and visual functions. Arch. Dis. Child Fetal Neonatal Ed. 2015; 100 (2): F179–84. doi: 10.1136/archdischild-2014-306207
22. Moskowitz A., Hansen R., Fulton A. Retinal, visual, and refractive development in retinopathy of prematurity. Eye and Brain. 2016; 8: 103–11. doi: 10.2147/EB.S9502
23. Shatz C.J. Emergence of order in visual system development. J. Physiol. Paris. 1996; 90: 141–50.
24. Wong R.O.L. Retinal waves and visual system development. Annu. Rev. Neurosci. 1999; 22: 29–47.
25. Tian N. Visual experience and maturation of retinal synaptic pathways. Vis. Res. 2004; 44 (28): 33. doi: 10.1016/j.visres.2004.07.041
26. Madan A., Good W.V. Preterm birth and the visual system. NeoReviews. 2005; 6(3): e153-159. doi: 10.1542/neo.6-3-e153
27. Xu H.P., Tian N. Retinal ganglion cell dendrites undergo a visual activity-dependent redistribution after eye opening. J. Comp. Neurol. 2007; 503 (2): 244–59. doi: 10.1002/cne.21379
28. Luciana M. Cognitive development in children born preterm: Implications for theories of brain plasticity following early injury. Dev. Psychopathol. 2003; 15: 1017–47. doi: 10.1017.S095457940300049X
29. Rothman A.L., Mangalesh S., Chen X., Toth C.A. Optical coherence tomography of the preterm eye: from retinopathy of prematurity to brain development. Eye and Brain. 2016; 8: 123–33. doi: 10.2147/EB.S97660
30. The effects of light reduction on retinopathy of prematurity (LightROP). ClinicalTrials.gov Identifier: NCT00000156. First Posted: September 24, 1999. Last Update Posted: June 5, 2006. Available at: https://clinicaltrials.gov/ct2/show/NCT00000156
31. Reynolds J.D., Hardy R.J., Kennedy K.A., et al. Lack of efficacy of light reduction in preventing retinopathy of prematurity. Light reduction in retinopathy of prematurity (LIGHT-ROP) Cooperative Group. N. Engl. J. Med. 1998; 338 (22): 1572–6. doi: 10.1056/NEJM199805283382202
32. Jorge E.C, Jorge E.N., El Dib R.P. Early light reduction for preventing retinopathy of prematurity in very low birth weight infants. Cochrane Database of Systematic Reviews. 2013; (8). Art. No.: CD000122. doi: 10.1002/14651858.CD000122.pub2
33. Okwundu C.I., Okoromah C.A.N., Shah P.S. Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants. Cochrane Database of Systematic Reviews. 2012, Issue 1. Art. No.: CD007966. doi: 10.1002/14651858.CD007966.pub2
34. Nguyen M.-T.T., Vemaraju S., Nayak G., et al. An opsin 5–dopamine pathway mediates light-dependent vascular development in the eye. Nature Cell Biology. 2019; 21 (4): 420 doi: 10.1038/s41556-019-0301-x
35. Grossniklaus H.E., Kang S.J., Berglin L. Animal models of choroidal and retinal neovascularization. Prog. Retin. Eye Res. 2010; 29: 500–19. doi:10.1016/j.preteyeres.2010.05.003
36. Rojas J.C., Lee J., John J.M., Gonzalez-Lima F. Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J. Neurosci. 2008; 28: 13511–21. doi:10.1523/JNEUROSCI.3457-08.2008
37. Albarracin R., Eells J., Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 2011; 52: 3582–92. doi:10.1167/iovs.10-6664
38. Albarracin R., Valter K. 670 nm red light preconditioning supports muller cell function: evidence from the white light-induced damage model in the rat retina. Photochem. Photobiol. 2012; 88 (6): 1418–27. doi: 10.1111/j.1751-1097.2012.01130.x
39. Ying R., Liang H.L., Whelan H.T., Eells J.T., Wong-Riley M.T. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 2008; 1243: 167–73. doi:10.1016/j.brainres.2008.09.057
40. Eells J.T., Wong-Riley M.T., VerHoeve J., et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004; 4: 559–67. doi:10.1016/j.mito.2004.07.033
41. Natoli R., Zhu Y., Valter K., et al. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010; 16: 1801–22.
42. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. Biol. 1999; 49: 1–17. doi:10.1016/S1011-1344(98)00219-X
43. Silveira P.C., Streck E.L., Pinho R.A. Evaluation of mitochondrial respiratory chain activity in wound healing by low-level laser therapy. J. Photochem. Photobiol. B. Biol. 2007; 86: 279–82. doi:10.1016/j.jphotobiol.2006.10.002
44. Кару Т.И., Афанасьева Н.И. Цитохром-с-оксидаза как первичный фотоакцептор при лазерном воздействии света видимого и ближнего ИК-диапазона на культуру клеток. Доклады АН. 1995; 342: 693–7.
45. Zhou X., Pardue M.T., Iuvone P.M., Qu J. Dopamine signaling and myopia development: what are the key challenges? Prog. Retin. Eye Res. 2017; 61: 60–71. doi:10.1016/j.preteyeres.2017.06.003
46. Bhattacharya R., Sinha S., Yang Su-Ping, et al. The neurotransmitter dopamine modulates vascular permeability in the endothelium. J. Mol. Signal. 2008; 3: 14. doi: 10.1186/1750-2187-3-14
47. Tarttelin E.E., Bellingham J., Hankins M.W., Foster R.G., Lucas R.J. Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Letters. 2003; 554 (3): 410–6. doi:10.1016/S00145793(03)01212-2
48. Tomonari S., Migita K., Takagi A., Noji S., Ohuchi H. Expression patterns of the opsin 5-related genes in the developing chicken retina. Dev. Dynamics. 2008; 237 (7): 1910–22. doi: 10.1002/dvdy.21611
49. Nakane Y., Ikegami K., Ono H., et al. A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. PNAS U.S.A. 2010; 107 (34): 15264–8. doi: 10.1073/pnas.1006393107
50. Sato K., Yamashita T., Haruki Y., et al. Two UV-sensitive photoreceptor proteins, Opn5m and Opn5m2 in ray-finned fish with distinct molecular properties and broad distribution in the retina and brain. PLoS One. 2016; 11 (5): e0155339. doi: 10.1371/journal.pone.0155339
51. Kojima D., Mori S., Torii M., et al. UV-sensitive photoreceptor protein OPN5 in humans and mice. PLoS One. 2011; 6: e26388. https://doi.org/10.1371/journal.pone.0026388
52. Rivera J.C., Holm M., Austeng D., et al. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J. Neuroinflam. 2017; 14 (1): 165. doi: 10.1186/s12974-017-0943-1
53. Fulton A.B., Hansen R.M., Moskowitz A., Akula J.D. The neurovascular retina in retinopathy of prematurity. Prog. Retin. Eye Res. 2009; 28 (6): 452–82. doi: 10.1016/j.preteyeres.2009.06.003
54. Hansen R.M., Moskowitz A., Akula J.D., Fulton A.B. The neural retina in retinopathy of prematurity. Prog. Retin. Eye Res. 2017; 56: 32–57. doi:10.1016/j.preteyeres.2016.09.004
55. Harris M.E., Moscowitz A., Fulton A.B., Hansen R.M. Long-term effects of retinopathy of prematurity (ROP) on rod and rod-driven function. Doc. Ophthalmol. 2011; 122 (1): 19–27. doi: 10.1007/s10633-010-9251-0
56. Akula J.D., Hansen R.M., Martinez-Perez M.E., Fulton A.B. Rod photoreceptor function predicts blood vessel abnormality in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2007; 48 (9): 4351–9. doi: 10.1167/iovs.07-0204
57. Liu K., Akula J.D., Falk C., Hansen R.M., Fulton A.B. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2006; 47: 2639–47. doi: 10.1167/iovs.06-0016
58. Hansen R.M., Tavormina J.L., Moskowitz A., Fulton A.B. Effect of retinopathy of prematurity on scotopic spatial summation. Invest. Ophthalmol. Vis. Sci. 2014; 55 (5): 3311–3. doi: 10.1167/iovs.1414344
59. Hansen R.M., Moskowitz A., Tavormina J.L., Bush J.N., Fulton A.B. Temporal summation in children with a history of retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. 2015; 56: 914–7. doi: 10.1167/iovs.14-16102
60. Hansen R.M., Fulton A.B. Dark-adapted thresholds at 10- and 30-deg eccentricities in 10-week-old infants. Vis. Neurosci. 1995; 12 (3 May-Jun.): 509–12. doi:10.1017/s0952523800008415
61. Hansen R.M., Fulton A.B. The course of maturation of rod-mediated visual thresholds in infants. Invest. Ophthalmo.l Vis. Sci. 1999; 40 (8 Jul.): 1883–6. PMID: 10393066
62. Palmer E.A., Flynn J.T., Hardy R.J., et al. Incidence and early course of retinopathy of prematurity. The Cryotherapy for Retinopathy of Prematurity Cooperative Group. Ophthalmology. 1991; 98: 1628–40.
63. Fulton A.B., Hansen R.M., Moskowitz A., Barnaby A.M. Multifocal ERG in subjects with a history of retinopathy of prematurity. Doc. Ophthalmol. 2005; 111: 7–13. doi: 10.1007/s10633-005-2621-3
64. Hammer D.X., Iftimia N.V., Ferguson R.D., et al. Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 2008; 49 (5): 2061–70. doi: 10.1167/iovs.07-1228
65. Yanni S.E., Wang J., Cheng C.S., et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am. J. Ophthalmol. 2013; 155 (2): 354–60; e1. doi: 10.1016/j.ajo.2012.08.010
66. Коголева Л.В., Аракелян М.А., Шамшинова А.М., Катаргина Л.А. Роль электрофизиологических исследований в оценке и прогнозировании зрения при ретинопатии недоношенных. Российский офтальмологический журнал. 2013; 6 (3): 40–4.
67. Akula J.D., Mocofanescu A., Ferguson R.D., et al. Retinal remodeling in retinopathy of prematurity. Invest. Ophthalmol. Vis. Sci. April 2014, 55: 3505. Available at: https://iovs.arvojournals.org/article.aspx?articleid=2268939
68. Francardo V., Schmitz Y., Sulzer D., Cenci M.A. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp. Neurol. 2017; 298: 137–47. https://doi.org/10.1016/j.expneurol.2017.10.001
69. Goldberger A.L., Amaral L.A.N., Hausdorff J.M., et al. Fractal dynamics in physiology: Alterations with disease and aging. Proc. Natl. Acad. Sci. USA. 2002; 99 (Suppl.1): 2466–72. https://doi.org/10.1073/pnas.012579499
70. Manor B., Lipsitz L.A. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2013; 45: 287–93. https://doi.org/10.1016/j.pnpbp.2012.08.020
71. Zueva M. Fractality of sensations and the brain health: the theory linking neurodegenerative disorder with distortion of spatial and temporal scale-invariance and fractal complexity of the visible world. Front. Aging Neurosci. 2015; 7: 135. https://doi.org/10.3389/fnagi.2015.00135
72. Zueva M.V. Dynamic fractal flickering as a tool in research of nonlinear dynamics of the evoked activity of a visual system and the possible basis for new diagnostics and treatment of neurodegenerative diseases of the retina and brain. World Applied Sciences Journal. 2013; 27 (4): 462–8. doi: 10.5829/idosi.wasj.2013.27.04.13657
73. Зуева М.В. Технологии нелинейной стимуляции: роль в терапии заболеваний головного мозга и потенциал применения у здоровых лиц. Физиология человека. 2018; 44 (3): 62–73. https://doi.org/10.7868/S0131164618030074
Рецензия
Для цитирования:
Зуева М.В., Коголева Л.В., Катаргина Л.А. Пластичность сетчатки при ретинопатии недоношенных и перспективы фототерапии. Российский офтальмологический журнал. 2020;13(1):77-84. https://doi.org/10.21516/2072-0076-2020-13-1-77-84
For citation:
Zueva M.V., Kogoleva L.V., Katargina L.A. Retinal plasticity in retinopathy of prematurity, and phototherapy prospects. Russian Ophthalmological Journal. 2020;13(1):77-84. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-1-77-84