Preview

Russian Ophthalmological Journal

Advanced search

Facilities of diagnosis and monitoring of optic neuropathy in primary open-angle glaucoma. Part 2

https://doi.org/10.21516/2072-0076-2020-13-1-85-93

Abstract

The first part of the review was focused on modern methods of instrumental diagnostics of primary open-angle glaucoma [1]. Diagnostic possibilities and informativeness of objective measurable parameters were discussed with regard to special criteria, called clinical endpoints. The second part of the review is dedicated to finding methods of early diagnosis and criteria of the progression of glaucomatous optic neuropathy.

About the Authors

O. A. Kiseleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Olga A. Kiseleva - Dr. of Med. Sci., head, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. V. Balatskaya
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalia V. Balatskaya - Cand. of Med. Sci., head, department of immunology and virology

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. M. Bessmertny
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Aleksander M. Bessmertny - Dr. of Med. Sci., senior researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



L. V. Yakubova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Lia V. Yakubova - Cand. of Med. Sci., senior researcher, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



V. I. Kotelin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladislav I. Kotelin - Ph.D. student, glaucoma department

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Kiseleva O.A., Balatskaya N.V., Bessmertny A.M., Kotelin V.I. Facilities of diagnosis and monitoring of optic neuropathy in primary open-angle glaucoma. Part 1. Russian ophthalmological journal. 2019; 12 (2): 74–82 (In Russian). doi: 10.21516/2072-0076-2019-12-2-74-82

2. Goyal A., Srivastava A., Sihota R., Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr. Eye Res. 2014; 39 (8): 823–9. https://doi.org/10.3109/02713683.2011.556299

3. Wang S., Bao X. Hyperlipidemia, blood lipid level, and the risk of glaucoma: A Meta-Analysis. Invest. Ophthalmol. Vis. Sci. 2019; 60 (4): 1028-43. doi: 10.1167/iovs.18-25845

4. Li S., Zhang A., Cao W., Sun X. Elevated plasma endothelin-1 levels in normal tension glaucoma and primary open-angle glaucoma: a metaanalysis. Journal of ophthalmology. 2016; 2016: 2678017. http://dx.doi.org/10.1155/2016/2678017

5. Gramlich O.W., Beck S., Hohenstein-Blaulet N.V.T., et al. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PloS One. 2013; 8 (2): e57557. https://doi.org/10.1371/journal.pone.0057557

6. Yildirım O., Ateş N.A., Ercan B., et al. Role of oxidative stress enzymes in open-angle glaucoma. Eye. 2005; 19 (5): 580. doi: 10.1038/sj.eye.6701565

7. Rokicki W., Zalejska-Fiolka J., Pojda-Wilczek D., et al. Differences in serum oxidative status between glaucomatous and nonglaucomatous cataract patients. BMC ophthalmology. 2017; 17 (1): 13. https://doi.org/10.1186/s12886-017-0409-3

8. Erdurmus M., Yagci R., Atıs O., et al. Antioxidant status and oxidative stress in primary open angle glaucoma and pseudoexfoliative glaucoma. Curr. Eye Res. 2011; 36 (8): 713–8. https://doi.org/10.3109/02713683.2011.584370

9. Nucci C., Di Pierro D., Varesi C., et al. Increased malondialdehyde concentration and reduced total antioxidant capacity in aqueous humor and blood samples from patients with glaucoma. Mol. Vis. 2013; 19: 1841. PMID: 23946639

10. Zanon-Moreno V., Pons S, Gallego-Pinazo R., et al. Involvement of nitric oxide and other molecules with redox potential in primary open angle glaucoma. Arch. Soc. Esp. Oftalmol. 2008; 83: 365–72.

11. Openkova E.Yu., Korobeynikova E.N., Rykun V.S., Vin'kova G.A. Analysis of the state of biochemical parameters in the serum and tear fluid in patients with primary open-angle glaucoma. Klinicheskaya laboratornaya diagnostika. 2013; 5: 8–11 (in Russian)

12. Ghanem A.A., Arafa L.F., El-Baz A. Oxidative stress markers in patients with primary open-angle glaucoma. Curr. Eye Res. 2010; 35 (4): 295–301. https://doi.org/10.3109/02713680903548970

13. Balatskaya N.V., Frolkov V.K., Kiseleva T.N. The state of the antioxidant defense system in patients with neovascular agerelated macular degeneration during photodynamic therapy. Vestnik vosstanovitel'noy meditsiny. 2008; 6: 92–5 (in Russian)

14. Erichev V.P., Egorov E.A. Pathogenesis of primary open angle glaucoma. Vestnik oftal'mologii. 2014; 130 (6): 98–105 (in Russian). eLibrary ID: 22921998

15. Mousa A., Kondkar A.A., Al-Obeidan S.A., et al. Association of total antioxidants level with glaucoma type and severity. Saudi medical journal. 2015; 36 (6): 671. doi: 10.15537/smj.2015.6.10697

16. Abu-Amero K.K., Kondkar A.A., Mousa A., Osman E.A., Al-Obeidan S.A. Decreased total antioxidants in patients with primary open angle glaucoma. Curr. Eye Res. 2013; 38 (9): 959–64. https://doi.org/10.3109/02713683.2013.794246

17. Enghild J.J., Thogersen I.B., Oury T.D., et al. The heparin-binding domain of extracellular superoxide dismutase is proteolytically processed intracellularly during biosynthesis. J. Biol. Chem. 1999; 274 (21): 14818–22. doi: 10.1074/jbc.274.21.14818

18. Bagnis A., Izzotti A., Centofanti M., Sacca S.C., et al. Aqueous humor oxidative stress proteomic levels in primary open angle glaucoma. Exp. Eye Res. 2012; 103: 55–62. doi: 10.1016/j.exer.2012.07.011

19. Rokicki W., Zalejska-Fiolka J., Pojda-Wilczek D., Kabiesz A., Majewski W. Oxidative stress in the red blood cells of patients with primary open-angle glaucoma. Clinical hemorheology and microcirculation. 2016; 62 (4): 369–78. doi: 10.3233/CH-152029

20. Zanon-Moreno V., Asensio-Marquez E.M., Ciancotti-Oliver L., et al. Effects of polymorphisms in vitamin E-, vitamin C-, and glutathione peroxidase-related genes on serum biomarkers and associations with glaucoma. Mol. Vis. 2013; 19: 231. PMID: 23401652

21. Vin'kova G.A. Study of the lipid profile in patients with primary open-angle glaucoma. Aktual'nye problemy gumanitarnykh i estestvennykh nauk. 2014; (5–2): 203–5 (in Russian)

22. Gnana-Prakasam J.P., Martin P.M., Mysona B.A., et al. Hepcidin expression in mouse retina and its regulation via lipopolysaccharide/ Toll-like receptor-4 pathway independent of Hfe. Biochem. J. 2008; 411 (1): 79–88. doi: 10.1042/BJ20071377

23. Sorkhabi R., Ghorbanihaghjo A., Javadzadeh A., Motlagh B.F., Ahari S.S. Aqueous humor hepcidin prohormone levels in patients with primary open angle glaucoma. Mol. Vis. 2010; 16: 1832. PMID: 21031015

24. Grus F.H., Joachim S.C., Sandmann S., et al. Transthyretin and complex protein pattern in aqueous humor of patients with primary open-angle glaucoma. Mol. Vis. 2008; 14: 1437. PMID: 18682810

25. Tripathi R.C., Borisuth N.S., Tripathi B.J., Gotsis S.S. Quantitative and qualitative analyses of transferrin in aqueous humor from patients with primary and secondary glaucomas. Invest. Ophthalmol. Vis. Sci. 1992; 33 (10): 2866–73. PMID:1526736

26. Duan X., Xue P., Wang N., et al. Proteomic analysis of aqueous humor from patients with primary open angle glaucoma. Mol. Vis. 2010; 16: 2839. PMID: 21203405

27. Bunin A.Ya. The study of hemodynamics of the eye in patients with glaucoma. Vestnik oftal'mologii. 1967; 1: 31–3 (in Russian)

28. Bunin A.Ya. Hemodynamics of the eye and methods of its research. Moscow: Meditsina; 1971 (in Russian)

29. Balaratnasingam C., Morgan W.H., Bass L., et al. Time-dependent effects of focal retinal ischemia on axonal cytoskeleton proteins. Invest. Ophthalmol. Vis. Sci. 2010; 51 (6): 3019–28. doi: 10.1167/iovs.09-4692

30. Romano C., Price M.T., Almli T., Olney J.W. Excitotoxic neurodegeneration induced by deprivation of oxygen and glucose in isolated retina. Invest. Ophthalmol. Vis. Sci. 1998; 39 (2): 416–23.

31. Januleviciene I., Sliesoraityte I., Siesky B., Harris A. Diagnostic compatibility of structural and haemodynamic parameters in openangle glaucoma patients. Acta Ophthalmol. 2008; 86 (5): 552–7. doi: 10.1111/j.1600-0420.2007.01091.x

32. Kargi S.H., Altin R., Koksal M., et al. Retinal nerve fiber layer measurements are reduced in patients with obstructive sleep apnoea syndrome. Eye. 2005; 19 (5): 575–9. doi: 10.1038/sj.eye.6701582

33. Kurysheva N.I., Parshunina O.A., Shatalova E.O., et al. Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye Res. 2017; 42 (3): 411–7. doi: 10.1080/02713683.2016.1184281

34. Pavlenko T.A., Beznos O.V., Grigor'ev A.V., Davydova N.G., Chesnokova N.B. Endothelin in the lacrimal fluid of patients with primary open-angle glaucoma as markers and predictors of the severity of the glaucomatous process. Sovremennye tekhnologii v oftal'mologii. 2018; 3: 86–8 (in Russian). OAI-PMH ID: oai:eyepress.ru:article27924

35. Tezel G., Kass M.A., Kolker A.E., Becker B., Wax M.B. Plasma and aqueous humor endothelin levels in primary open-angle glaucoma. Journal Glaucoma. 1997; 6 (2): 83–9. PMID:9098815.

36. Choritz L., Machert M., Thieme H. Correlation of endothelin-1 concentration in aqueous humor with intraocular pressure in primary open angle and pseudoexfoliation glaucoma. Invest. Ophthalmol. Vis. Sci. 2012; 53 (11): 7336–42. doi: 10.1167/iovs.12-10216

37. Kunimatsu S., Mayama C., Tomidokoro A., Araie M. Plasma endothelin-1 level in Japanese normal tension glaucoma patients. Curr. Eye Res. 2006; 31 (9): 727–31. https://doi.org/10.1080/02713680600837382

38. Chen H.Y., Chang Y.C., Chen W.C., Lane H.Y. Association between plasma endothelin-1 and severity of different types of glaucoma. Journal of glaucoma. 2013; 22 (2): 117–22. doi: 10.1097/IJG.0b013e31822e8c65

39. Moreno M.C., Campanelli J., Sande P., et al. Retinal oxidative stress induced by high intraocular pressure. Free Radic. Biol. Med. 2004; 37 (6): 803–12. https://doi.org/10.1016/j.freeradbiomed.2004.06.001

40. Galassi F., Renieri G., Sodi A., et al. Nitric oxide proxies and ocular perfusion pressure in primary open angle glaucoma. Br. J. Ophthalmol. 2004; 88 (6): 757–60. doi: 10.1136/bjo.2003.028357

41. Moncada S., Palmer R.M., Higgs E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991; 43: 109–42.

42. Javadiyan S., Burdon K.P., Whiting M.J., et al. Elevation of serum asymmetrical and symmetrical dimethylarginine in patients with advanced glaucoma. Invest. Ophthalmol. Vis. Sci. 2012; 53 (4): 1923–7. doi: 10.1167/iovs.11-8420

43. Turgut B., Kaya M., Arslan S., et al. Levels of circulating homocysteine, vitamin B6, vitamin B12, and folate in different types of open-angle glaucoma. Clin. Interv. Aging. 2010; 5: 133. PMID: 20458351

44. Ghanem A.A., Mady S.M., El Awady H.E., Arafa L.F. Homocysteine and hydroxyproline levels in patients with primary open-angle glaucoma. Curr. Eye Res. 2012; 37 (8): 712–8. https://doi.org/10.3109/02713683.2012.669512

45. Krishna Vadlapatla R., Dutt Vadlapudi A., Mitra A.K. Hypoxiainducible factor-1 (HIF-1): a potential target for intervention in ocular neovascular diseases. Current drug targets. 2013; 14 (8): 919–35.

46. Tezel G., Wax M.B. Hypoxia-inducible factor 1a in the glaucomatous retina and optic nerve head. Arch. Ophthalmol. 2004; 122 (9): 1348–56. doi: 10.1001/archopht.122.9.1348

47. Kitaoka Y., Kitaoka Y., Kwong J.M., et al. TNF-alpha-induced optic nerve degeneration and nuclear factor kappa B p65. Invest. Ophthalmol. Vis. Sci. 2006; 47 (4): 1448–57. doi: 10.1167/iovs.05-0299

48. Abcouwer S.F., Shanmugam S., Gomez P.F., et al. Effect of IL-1beta on survival and energy metabolism of R28 and RGC-5 retinal neurons. Invest. Ophthalmol. Vis. Sci. 2008; 49 (12): 5581–92. doi: 10.1167/iovs.07-1032

49. Barycheva L.Yu., Khayt G.Ya., Kakuliya M.G., Bernovskaya A.A., Kakuliya D.M. Clinical and pathogenetic significance of pro-and anti-inflammatory cytokines in the development of primary openangle glaucoma. Sovremennye problemy nauki i obrazovaniya. 2017; 2: 54–5 (in Russian). http://www.science-education.ru/ru/article/view?id=26250

50. Slepova O.S., Arapiev M.U., Lovpache D.N., Balatskaya N.V., Kulikova I.G. Specifics of local and systemic cytokine profile in healthy people of different ages and patients with early stage of primary open-angle glaucoma. Natsional'nyy zhurnal glaukoma. 2016; 15 (1): 3–12 (in Russian). https://doi.org/10.1097/00004647199605000-00004

51. Markelova E.V., Kirienko A.V., Chikalovets I.V., Dogadova L.P. Characteristics of the cytokine system and its role in the pathogenesis of primary glaucoma. Fundamental'nye issledovaniya. 2014; 2: 110–6 (in Russian)

52. Kondkar A.A., Sultan T., Almobarak F.A., et al. Association of increased levels of plasma tumor necrosis factor alpha with primary open-angle glaucoma. Clinical Ophthalmology (Auckland, NZ). 2018; 12: 701. doi: 10.2147/OPTH.S162999

53. Maruyama I., Ohguro H., Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against y-enolase found in glaucoma patients. Invest. Ophthalmol. Vis. Sci. 2000; 41 (7): 1657–65. PMID:10845582

54. Ikeda Y., Maruyama I., Nakazawa M., Ohguro H. Clinical significance of serum antibody against neuron-specific enolase in glaucoma patients. Jpn. J. Ophthalmol. 2002; 46 (1): 13–7. PMID: 11853708

55. Tezel G., Edward D.P., Wax M.B. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch. Ophthalmol. 1999; 117 (7): 917–24. doi: 10.1001/archopht.117.7.917

56. Wax M.B., Tezel G., Kawase K., Kitazawa Y. Serum autoantibodies to heat shock proteins in glaucoma patients from Japan and the United States. Ophthalmology. 2001; 108 (2): 296–302. https://doi.org/10.1016/S0161-6420(00)00525-X

57. Slepova O.S., Frolov M.A., Morozova N.S., Frolov A.M., Lovpache D.N. Markers of Fas-mediated apoptosis in primary open-angle glaucoma and opportunities of their pharmacological correction. Vestnik oftal’mologii. 2012; 128 (4): 27–31 (in Russian)

58. Razeghinejad M.R., Kamali-Sarvestani E. Aqueous humor levels of soluble Fas and Fas-ligand in patients with primary open angle and pseudoexfoliation glaucoma. Iranian Journal of Immunology. 2007; 4 (4): 215–9.

59. Ghaffariyeh A., Honarpisheh N., Heidari M.H., Puyan S., Abasov F. Brain-derived neurotrophic factor as a biomarker in primary openangle glaucoma. Optom. Vis. Sci. 2011; 88 (1): 80–5. doi: 10.1097/OPX.0b013e3181fc329f

60. Gabdrakhmanova A.F., Aznabaeva L.F., Kurbanov S.A., Abizgil'dina G.Sh. Molecular mechanisms of neurodegeneration in primary open-angle glaucoma. Meditsinskiy vestnik Bashkortostana. 2018; 13; 1 (73): 61–5 (in Russian)

61. Shpak A.A., Gekht A.B., Druzhkova T.A., Kozlova K.I., Gulyaeva N.V. Neurotrophic factors in patients with primary open-angle glaucoma and age-related cataract. Part 2. Brain-derived neurotrophic factor. Oftal'mokhirurgiya. 2018; 4: 46–51 (in Russian). https://doi.org/10.25276/0235-4160-2018-4-46-51


Review

For citations:


Kiseleva O.A., Balatskaya N.V., Bessmertny A.M., Yakubova L.V., Kotelin V.I. Facilities of diagnosis and monitoring of optic neuropathy in primary open-angle glaucoma. Part 2. Russian Ophthalmological Journal. 2020;13(1):85-93. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-1-85-93

Views: 849


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)