Preview

Russian Ophthalmological Journal

Advanced search

A strategically oriented conception of optical prevention of myopia onset and progression

https://doi.org/10.21516/2072-0076-2020-13-4-7-16

Abstract

The article presents a theoretical and clinical justification for optical techniques used for the prevention of myopia. Accommodation, wavefront aberrations, peripheral refraction, and retinal image quality are considered as interrelated factors affecting postnatal refractogenesis. A detailed analysis of myopia correction methods, conditions preceding its development and their impact on the dynamics of refraction and eye growth is given. A strategy of optical correction of myopia was proposed, which includes: 1) constant wearing of defocusing binocular positive spectacle lens or Perifocal-P spectacle lens (in case of exophoria) for children at risk aged 4–7 years; 2) constant alternating weak myopic defocusing in case of myopia from 0.5 to 2.75 D, ortho- or esophoria, positive relative accommodation (PRA), peripheral myopia or emmetropia; progressive addition spectacle lens in case of PRA less than 1.0 D; Perifocal-Msa spectacle lens in the case of a combination of reduced PRA and exophoria; 3) Perifocal-M spectacle lens in case of myopia of any degree with already existing hyperopic peripheral defocus; progressive addition spectacle lens in case of PRA less than 1.0 D in combination with esophoria or Perifocal-Msa spectacle lens in combination with exophoria; 4) contact correction with bifocal soft contact lenses or orthokeratological contact lenses (Ortho-K) in case of refusal from spectacle correction. Ortho-K is preferable with moderate and high myopia; 5) bioptic correction: a combination of monofocal soft contact lenses and Perifocal-M spectacle lens to correct peripheral defocus and residual astigmatism is preferable for myopia over 8.0 D and myopia with astigmatism.

About the Authors

E. P. Tarutta
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Еlena P. Tarutta — Dr. of Med. Sci., professor, head of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



O. V. Proskurina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Olga V. Proskurina — Dr. of Med. Sci., leading researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



G. A. Markossian
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Gayane A. Markossian — Dr. of Med. Sci., leading researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



S. V. Milash
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Sergey V. Milash — researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. A. Tarasova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natal'ya A. Tarasova — Cand. of Med. Sci., senior researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. V. Khodzhabekyan
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Narine V. Khodzhabekyan — Cand. of Med. Sci., leading researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Fricke T.R., Jong M., Naidoo K.S., et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through 2050: systematic review, meta-analysis and modelling. Br. J. Ophthalmol. 2018; 102 (7): 855–62. https://doi.org/10.1136/bjophthalmol-2017-311266

2. Holden B.A., Fricke T.R., Wilson D.A., et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016; 123 (5): 1036–42. https://doi.org/10.1016/j.ophtha.2016.01.006

3. Neroev V.V. Eye care management in Russian Federation. Vestnik oftal’mologii. 2014; 130 (6): 8–12 (In Russian).

4. Katargina L.A., Mihajlova L.A. State of children's ophthalmological service of the Russian Federation (2012–2013). Rossijskaya pediatricheskaya oftal'mologiya. 2015; 1: 5–10 (In Russian).

5. Ikuno Y. Overview of the complications of high myopia. Retina. 2017; 37 (12): 2347–2351. https://doi.org/10.1097/IAE.0000000000001489

6. Bullimore M.A., Brennan N.A. Myopia control: why each diopter matters. Optom. Vis. Sci. 2019; 96 (6): 463–5. https://doi.org/10.1097/opx.0000000000001367

7. Morgan I.G., French A.N., Ashby R.S., et al. The epidemics of myopia: aetiology and prevention. Progress in retinal and eye research. 2018; 62: 134–49. https://doi.org/10.1016/j.preteyeres.2017.09.004

8. Grzybowski A., Kanclerz P., Tsubota K., et al. A review on the epidemiology of myopia in school children worldwide. BMC Ophthalmol. 2020; 20 (1): 27. https://doi.org/10.1186/s12886-019-1220-0

9. Proskurina O.V., Markova E.Y., Brzheskij V.V., et al. The Prevalence of myopia in schoolchildren in some regions of Russia. Oftal'mologiya. 2018; 15 (3): 348–53 (In Russian). https://doi.org/10.18008/1816-5095-2018-3-348-353

10. Dolgin E. The myopia boom. Nature. 2015; 519 (7543): 276–8. https://doi.org/10.1038/519276a

11. Schaeffel F., Feldkaemper M. Animal models in myopia research. Clinical and Experimental Optometry. 2015; 98 (6): 507–7. https://doi.org/10.1111/cxo.12312

12. Troilo D., Smith E.L. 3rd, Nickla D.L., et al. IMI — Report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 2019; 60 (3): M31–M88. https://doi.org/10.1167/iovs.18-25967

13. Wallman J., Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004; 43 (4): 447–68. https://doi.org/10.1016/j.neuron.2004.08.008

14. Nickla D.L., Wallman J. The multifunctional choroid. Progress in retinal and eye research. 2010; 29 (2): 144–68. https://doi.org/10.1016/j.preteyeres.2009.12.002

15. Harper A.R., Summers J.A. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp. Eye Res. 2015; 133: 100–11. https://doi.org/10.1016/j.exer.2014.07.015

16. Smith E. L., Huang J., Hung L.-F., et al. Hemi-retinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest. Ophthalmol. Vis. Sci. 2009; 50 (11): 5057–69. http://doi.org/10.1167/iovs.08-3232

17. Smith E. L., Hung L.-F., Huang J., et al. Effects of optical defocus on refractive development in monkeys: evidence for local, regionally selective mechanisms. Invest. Ophthalmol. Vis. Sci. 2010; 51 (8): 3864–73. http://doi.org/10.1167/iovs.09-4969

18. Smith E.L. 3rd. Prentice award lecture 2010: A case for peripheral optical treatment strategies for myopia. Optom. Vis. Sci. 2011; 88 (9): 1029–44. https://doi.org/10.1097/opx.0b013e3182279cfa

19. Troilo D., Gottlieb M.D., Wallman J. Visual deprivation causes myopia in chicks with optic nerve section. Curr. Eye Res. 1987; 6: 993–9.

20. Raviola E., Wiesel T.N. Neural control of eye growth and experimental myopia in primates. Ciba Found Symp. 1990; 155: 22–44.

21. Avetisov E.S. Myopia. Moscow: Meditsina; 1986, 1999 (In Russian).

22. Avetisov E.S. Current trends in the study of the etiology and pathogenesis of myopia. Vestnik oftal’mologii. 1967; 80 (5): 38–45 (In Russian).

23. Davies L.N., Mallen E.A. Influence of accommodation and refractive status on the peripheral refractive profile. The British journal of ophthalmology. 2009; 93 (9): 1186–90. https://doi.org/10.1136/bjo.2009.159053

24. Lundström L., Mira-Agudelo A., Artal P. Peripheral optical errors and their change with accommodation differ between emmetropic and myopic eyes. Journal of vision. 2009; 9 (6): 1–11. https://doi.org/10.1167/9.6.17

25. Whatham A., Zimmermann F., Martinez A., et al. Influence of accommodation on off-axis refractive errors in myopic eyes. Journal of Vision. 2009; 9 (3): 14, 1–13. https://doi.org/10.1167/9.3.14

26. Charman W.N., Radhakrishnan H. Peripheral refraction and the development of refractive error: a review. Ophthalmic and Physiological Optics. 2010; 30 (4): 321–38. https://doi.org/10.1111/j.1475-1313.2010.00746.x

27. Tarutta E.P., Tarasova N.A. Comprehensive study of accommodation in its insufficiency. Rossijskaya pediatricheskaya oftal'mologiya. 2013; 2: 38–40 (In Russian).

28. Dashevskij А.I. Pseudomyopia. Моscow: Meditsina; 1973 (In Russian).

29. Оnufriychuk О.N., Rozenblum Yu.Z. Regularities of the refractogenesis of school myopia and criteria for its prediction. Vestnik Oftalmologii. 2007; 123 (1): 22–4 (In Russian).

30. Tarutta E.P., Tarasova N.A. Differential diagnostic criteria of accommodative disorders. Vestnik oftal’mologii. 2013; 129 (6): 28–32 (In Russian).

31. Gwiazda J., Thorn F., Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom. Vis. Sci. 2005; 82 (4): 273–8. doi:10.1097/01.OPX.0000159363.07082.7D

32. Grosvenor T.P. Primary care optometry: a clinical manual. Chicago: The Professional Press, Inc; 1982.

33. Goss D.A. Clinical accommodation and heterophoria findings preceding juvenile onset of myopia. Optom. Vis. Sci. 1991; 68 (2): 110–6. https://doi.org/10.1097/00006324-199102000-00005

34. Medvetskaya G.A. Prevention of myopia and its progression by affecting the eye's accommodation apparatus. Vestnik oftal’mologii. 1981; 5: 47–9 (In Russian).

35. Yugaj L.V. The influence of training exercises by E.S. Avetisov and K.A. Matz on refractogenesis of pupils who are at risk of myopia. Vestnik oftal’mologii. 1983; 5: 58–60 (In Russian).

36. Collins M.J., Wildsoet C.F. Optical treatment method. Australia: Queensland University of technology. Brisbane (Australia); 2000.

37. Kirwan C., O’Keffe M., Soeldner H. Higher-order aberrations in children. Am. J. Ophthalmol. 2006; 141 (1): 67–70. https://doi.org/10.1016/j.ajo.2005.08.031

38. Philip K., Sankaridurg P., Holden B., et al. Influence of higher-order aberrations and retinal image quality in myopization of emmetropic eyes. Vision Research. 2014; 105: 233–43. https://doi.org/10.1016/j.visres.2014.10.003

39. Zhang N., Yang X., Zhang W., et al. Relationship between higher-order aberrations and myopia progression in schoolchildren. A retrospective study. Int. J. Ophthalmol. 2013 18; 6 (3): 295–9. https://doi.org/10.3980/j.issn.22223959.2013.03.07

40. Hartwig A., Atchison D.A., Radhakrishnan H. Higher-order aberrations and anisometropia. Curr. Eye Res. 2013; 38 (1): 215–29. https://doi.org/10.3341/kjo.2014.28.1.66

41. Paquin M.P., Hamam H., Simonet P. Objective measurement of optical aberrations in myopic eyes. Optom. Vis. Sci. 2002; 79 (5): 285–91. https://doi.org/10.1097/00006324-200205000-00007

42. Neroev V.V., Tarutta E.P., Harutyunyan S.G., et al. Wavefront and accommodation parameters under different conditions of correction in myopia and hyperopia. Vestnik oftal’mologii. 2018; 134 (5): 15–20 (In Russian). http://dx.doi.org/10.17116/oftalma201813405115

43. Tarutta E.P., Tarasova N.A., Markossian G.A., et al. The state and dynamics of the wavefront of the eye in children with different refractions engaged in regular sport activities (badminton). Russian ophthalmological journal. 2019; 12 (2): 49–58 (In Russian). https://doi.org/10.21516/20720076-2019-12-2-49-58

44. Mutti D.O., Zadnik K., Fusaro R.E., et al. Optical and structural development of the crystalline lens in childhood. Invest. Ophthalmol. Vis. Sci. 1998; 39 (1): 120–33.

45. Drexler W., Findl O., Schmetterer L., Hitzenberger C.K., Fercher A.F. Eye elongation during accommodation in humans: differences between emmetropes and myopes. Invest. Ophthalmol. Vis. Sci. 1998; 39 (11): 2140–7.

46. Croft M.A., Nork T.M., McDonald J.P., et al. Accommodative movements of the vitreous membrane, choroid, and sclera in young and presbyopic human and nonhuman primate eyes. Invest. Ophthalmol. Vis. Sci. 2013; 54 (7): 5049–68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3726242/

47. Berntsen D.A., Mutti D.O., Zadnik K. Study of theories about myopia progression (STAMP) design and baseline data. Optom. Vis. Sci. 2010; 87 (11): 823–32. https://doi.org/10.1097/OPX.0b013e3181f6f776

48. Smith E.L. 3rd. Optical treatment strategies to slow myopia progression: effects of the visual extent of the optical treatment zone. Exp. Eye Res. 2013; 114: 77–88. https://doi.org/10.1016/j.exer.2012.11.019

49. He J.C. A Model of the effect of lens development on refraction in schoolchildren. Optom. Vis. Sci. 2017; 94 (12): 1129–37. https://doi.org/10.1097/OPX.0000000000001146

50. Hung G.K., Ciuffreda K.J. Model of human refractive error development. Curr. Eye Res. 1999; 19 (1): 41–52. https://doi.org/10.1076/ceyr.19.1.41.5343

51. Hung G.K., Ciuffreda K.J. A unifying theory of refractive error development. Bull. Math. Biol. 2000; 62 (6): 1087–108. https://doi.org/10.1006/bulm.2000.0199

52. Tarutta E.P., Khodzhabekian N.V., Filinova O.B., Kruzhkova G.V. Impact of continuous graduated slight myopic defocusing on postnatal refractogenesis. Vestnik oftal’mologii. 2008; 124 (6): 21–4 (In Russian).

53. Tarutta E., Khodzhabekyan N., Filinova O., Milash S., Kruzhkova G. Long-term effects of optical defocus on eye growth and refractogenesis. Pomeranian J. Life Sci. 2016; 62 (1): 25–30.

54. Khodjabekyan N.V., Tarutta E.P., Filinova O.B., Tarasova N.A. Binocular functions, sensory and motor eye dominance ratio, and objective accommodation response in patients with acquired, congenital and induced anisometropic myopia. Russian ophthalmological journal. 2012; 5 (1): 80–2 (In Russian).

55. Gwiazda J., Hyman L., Hussein M., et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest. Ophthalmol. Vis. Sci. 2003; 44 (4): 1492–500. https://doi.org/10.1167/iovs.02-0816

56. Tarutta E.P., Tarasova N.A. Comparative efficiency evaluation of subjective and objective methods of ADD power selection in prescribing progressive lenses to children. Sovremennaya optometriya. 2011; 49 (9): 40–4 (In Russian).

57. Berntsen D.A., Barr C.D., Mutti D.O., Zadnik K. Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest. Ophthalmol. Vis. Sci. 2013; 54 (8): 5761–70. https://doi.org/10.1167/iovs.13-11904

58. Correction of Myopia Evaluation Trial 2 Study Group for the Pediatric Eye Disease Investigator Group. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Invest Ophthalmol. Vis. Sci. 2011; 52 (5): 2749–57. https://doi.org/10.1167/iovs.10-6631

59. Hasebe S., Ohtsuki H., Nonaka T., et al. Effect of progressive addition lenses on myopia progression in Japanese children: a prospective, randomized, doublemasked, crossover trial. Invest. Ophthalmol. Vis. Sci. 2008; 49 (7): 2781–9. https://doi.org/10.1167/iovs.07-0385

60. Yang Z., Lan W., Ge J., et al. The effectiveness of progressive addition lenses on the progression of myopia in Chinese children. Ophthalmic Physiol. Opt. 2009; 29 (1): 41–8. https://doi.org/10.1111/j.1475-1313.2008.00608.x

61. Berntsen D.A., Sinnott L.T., Mutti D.O., Zadnik K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest. Ophthalmol. Vis. Sci. 2012; 53 (2): 640–9. https://doi.org/10.1167/iovs.11-7769

62. Proskurina O.V., Tarasova N.A. Influence of progressive and perifocal glasses on refraction, accommodation and muscle balance in children with progressive myopia. Sovremennaya optometriya. 2019; 122 (2): 41–8 (In Russian).

63. Gwiazda J., Hyman L., Norton T.T., et al. Accommodation and related risk factors associated with myopia progression and their interaction with treatment in COMET children. Invest. Ophthalmol. Vis. Sci. 2004; 45 (7): 2143–51. https://doi.org/10.1167/iovs.03-1306

64. Tarutta E.P., Tarasova N.A., Milash S.V., Proskurina O.V., Markosian G.A. The influence of different means of myopia correction on peripheral refraction depending on the direction of gaze. Vestnik oftal’mologii. 2019; 135 (4): 60–9 (In Russian). https://doi.org/10.17116/oftalma201913504160

65. Lin Z., Martinez A., Chen X., et al. Peripheral defocus with single-vision spectacle lenses in mypic children. Optom. Vis. Sci. 2010; 87 (1): 4–9. https://doi.org/10.1097/OPX.0b013e3181c078f1

66. Backhouse S., Fox S., Ibrahim B., Phillips J.R. Peripheral refraction in myopia corrected with spectacles versus contact lenses. Ophthalmic Physiol. Opt. 2012; 32 (4): 294–303. https://doi.org/10.1111/j.1475-1313.2012.00912.x

67. Tabernero J., Vazquez D., Seidemann A., Uttenweiler D., Schaeffel F. Effects of myopic spectacle correction and radial refractive gradient spectacles on peripheral refraction. Vision Res. 2009; 49 (17): 2176–86. https://doi.org/10.1016/j.visres.2009.06.008

68. Tarutta E.P., Arutyunyan S.G., Milash S.V. The Correction of eye wavefront using contact lenses and their impact on the accommodative response. Russian ophthalmological journal. 2016; 9 (2): 102–7 (In Russan). https://doi.org/10.21516/2072-00762016-9-2-102-107

69. Fedtke C., Ehrmann K., Bakaraju R.C. Peripheral refraction and spherical aberration profiles with single vision, bifocal and multifocal soft contact lenses. J. Optom. 2020; 13 (1): 15–28. https://doi.org/10.1016/j.optom.2018.11.002

70. Tarutta E.P., Proskurina O. V., Milash S.V., et al. Peripheral defocus induced by Perifocal-M spectacles and myopia progression in children. Rossijskaya pediatricheskaya oftal'mologiya. 2015; 10 (2): 33–7 (In Russian).

71. Ibatulin R.A., Proskurina O.V., Tarutta E.P. Multi-factoral mechanisms of therapeutic effect of perifocal spectacles (Perifocal-M) on progressive myopia in children. Oftal'mologiya. 2018; 15 (4): 433–8 (In Russian). https://doi.org/10.18008/1816-5095-2018-4-433-438

72. Proskurina O.V., Tarutta E.P., Ibatulin R.A. Mechanismus of Perifocal M therapeutic impact and long-term date in children with progressive myopia. EC Ophthalmology. 2019; 10 (12): 63–9.

73. Tarutta E.P., Proskurina O.V., Tarasova N.A., Ibatulin R.A., Kovychev A.S. Myopia predictors as a starting point for active prevention of myopia development. Russian ophthalmological journal. 2018; 11 (3): 107–12 (In Russian). https://doi.org/10.21516/2072-0076-2018-11-3-107-112

74. Tarutta E.P., Proskurina O.V., Tarasova N.A., Markosyan G.A. Analysis of risk factors that cause myopia in pre-school children and primary school students. Health Risk Analysis. 2019; 3: 26–33 (In Russian). https://doi.org/10.21668/health.risk/2019.3.03.eng

75. Atchison D.A., Mathur A., Varnas S.R. Visual performance with lenses correcting peripheral refractive errors. Optom. Vis. Sci. 2013; 90 (11): 1304–11. https://doi.org/10.1097/OPX.0000000000000033

76. Tarutta E.P., Proskurina O.V., Tarasova N.A., Milash S.V., Markossian G.A. Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia. Vestnik Oftal’mologii. 2019; 135 (5): 46–53 (In Russian). http://dx.doi.org/10.17116/oftalma201913505146

77. Tarutta E.P., Harutyunyan S.G. The impact of orthokeratologic contact lenses on spherical aberration of the optical system of the eye. Russian ophthalmological journal. 2018; 11 (2): 17–21 (In Russian). https://doi.org/10.21516/2072-0076-2018-11-2-17-21

78. Hiraoka T., Matsumoto Y., Okamoto F., et al. Corneal higher-order aberrations induced by overnight orthokeratology. Am. J. Ophthalmol. 2005; 139 (3): 429–36. https://doi.org/10.1016/j.ajo.2004.10.006

79. Lau J.K., Vincent S.J., Cheung S.W., Cho P. Higher-order aberrations and axial elongation in myopic children treated with orthokeratology. Invest. Ophthalmol. Vis. Sci. 2020; 61 (2): 22. https://doi.org/10.1167/iovs.61.2.22

80. Yoo Y.S., Kim D.Y., Byun Y.S., et al. Impact of peripheral optical properties induced by orthokeratology lens use on myopia progression. Heliyon. 2020; 6 (4):e03642. https://doi.org/10.1016/j.heliyon.2020.e03642

81. Katargina L.A., ed. Accommodation: doctor's guide. Moscow: April; 2012 (In Russian).

82. Tarutta E.P., Alyaeva O.O., Egorova T.S. Method for estimating the volume of pseudo-accommodation before and after orthokeratological myopia correction. Patent RF №2500339; 2013 (in Russian).

83. Tarutta E.P., Alyaeva O.O., Egorova T.S. Assessment of accommodation and pseudo accommodation of myopic patients in ortokeratology. Russian ophthalmological journal. 2014; 7 (2): 68–71 (In Russian).

84. Si J.K., Tang K., Bi H.S., Guo D.D., Guo J.G., Wang X.R. Orthokeratology for myopia control: a meta-analysis. Optom. Vis. Sci. 2015; 92 (3): 252–7. https://doi.org/10.1097/OPX.0000000000000505

85. Tarutta E.P., Verzhanskaya T.Yu. Stabilizing effect of orthokeratology lenses (ten-year followup results). Vestnik Oftal’mologii. 2017; 133 (1): 49–54 (In Russian). https://doi.org/10.17116/oftalma2017133149-54

86. Hiraoka T., Sekine Y., Okamoto F., Mihashi T., Oshika T. Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic Physiol. Opt. 2018; 38 (3): 281–9. https://doi.org/10.1111/opo.12460

87. Lee Y., Wang, J., Chiu C. Effect of orthokeratology on myopia progression: twelve-year results of a retrospective cohort study. BMC Ophthalmol. 2017; 17 (1): 243. https://doi.org/10.1186/s12886-017-0639-4

88. Ruiz-Alcocer J., Madrid-Costa D., Radhakrishnan H., et al. Changes in accommodation and ocular aberration with simultaneous vision multifocal contact lenses. Eye Contact. Lens. 2012; 38 (5): 288–94. https://doi.org/10.1097/ICL.0b013e3182654994

89. Li S.M., Kang M.T., Wu S.S., et al. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in schoolaged children: a meta-analysis. Ophthalmic. Physiol. Opt. 2017; 37 (1): 51–9. https://doi.org/10.1111/opo.12332

90. Wolffsohn J.S., Calossi A., Cho P., et al. Global trends in myopia management attitudes and strategies in clinical practice — 2019 Update. Cont. Lens. Anterior Eye. 2020; 43 (1): 9–17. https://doi.org/10.1016/j.clae.2019.11.002

91. Markossian G.A., Tarutta E.P., Iomdina E.N., et al. The clinico-functional and biomechanical aspects of pathogenesis, diagnostics and treatment of congenital myopia: the review of the literature and the analysis of the native data. Rossijskaya pediatricheskaya oftal'mologiya. 2016; 3: 149–57 (In Russian).

92. Tarutta E.P., Tarasova N.A., Proskurina O.V., et al. Peripheral defocus of myopic eyes corrected with Perifocal-M glasses, monofocal glasses, and soft contact lenses. Russian ophthalmological journal. 2018; 11 (4): 36–42 (In Russian). https://doi.org/10.21516/2072-0076-201811-4-36-41

93. Sitka M.M., Bodrova S.G., Pozdeyeva N.A. The effectiveness of different optical correction methods in children and adolescents with progressive myopia based on a comparative evaluation of the accommodation and axial length of eyes. Oftal'mologiya. 2018; 15 (2S): 65–72 (In Russian). https://doi.org/10.18008/1816-50952018-2S-65-72


Review

For citations:


Tarutta E.P., Proskurina O.V., Markossian G.A., Milash S.V., Tarasova N.A., Khodzhabekyan N.V. A strategically oriented conception of optical prevention of myopia onset and progression. Russian Ophthalmological Journal. 2020;13(4):7-16. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-7-16

Views: 6686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)