Clinical and functional state of the retina after inadequate laser coagulation of peripheral vitreochorioretinal dystrophies. Part 2. A study of microcirculation of the macular area
https://doi.org/10.21516/2072-0076-2020-13-4-17-23
Abstract
About the Authors
V. V. NeroevRussian Federation
Vladimir V. Neroev — Academician of RAS, Dr. of Med. Sci., professor, director
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
G. Yu. Zakharova
Russian Federation
Galina Yu. Zakharova — Cand. of Med. Sci., leading researcher, department of the retina and optic nerve pathology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
T. D. Okhotsimskaya
Russian Federation
Tatiana D. Okhotsimskaya — Cand. of Med. Sci., ophthalmologist, department of the retina and optic nerve pathology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
M. V. Zueva
Russian Federation
Marina V. Zueva — Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
I. V. Tsapenko
Russian Federation
Irina V. Tsapenko — Cand. of Biol. Sci., senior researcher, department of clinical physiology of vision named after S.V. Kravkov
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
V. A. Fadeeva
Russian Federation
Viktoriya A. Fadeeva — PhD student, department of the retina and optic nerve pathology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
B. M. Magamadov
Russian Federation
Biluhagh M. Magamadov — PhD student, department of the retina and optic nerve pathology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Neroev V.V., Tsapenko I.V., Zakharova G.Yu., Kondratieva Yu.P., Zueva M.V. Changes in the macular function of the paired eye in patients with regmatogenic retinal detachment and peripheral vitreochorioretinal dystrophy after laser retinal coagulation. Bulletin of SB RAMS. 2014; 34 (3): 76–80 (in Russian).
2. Neroev V.V., Zakharova G.Yu., Tsapenko I.V., Zueva M.V., Okhotsimskaya T.D., Magamadov B.M. Clinical and functional state of the retina after inadequate laser coagulation of peripheral vitreochorioretinal dystrophies. Part 1. Electroretinography. Russian ophthalmological journal. 2020;13 (2): 45–52 (in Russian). https://doi.org/10.21516/2072-0076-2020-13-2-45-52
3. Alishunin L.V., Danilov O.V. Features of microcirculation in the peripheral parts of the retina and choroid in individuals with myopia combined with vitreoretinal degenerations. Modern technologies in ophthalmology. 2014; (2): 94–6 (in Russian).
4. Tokayer J., Jia Y., Dhalla A.H., Huang D. Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed. Opt. Express. 2013; 4 (10): 1909–24. doi: 10.1364/BOE.4.001909
5. Jia Y., Bailey S.T., Wilson D.J., et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014; 121 (7): 1435–44. doi: 10.1016/j.ophtha.2014.01.034
6. Neroev V.V., Okhotsimskaya T.D., Fadeeva V.A. Assessment of microvascular changes of the retina in diabetes mellitus by OCT-angiography. Russian ophthalmological journal. 2017; 10 (2): 40–5 (in Russian). https://doi/10.21516/2072-0076-2017-10-2-40-45
7. Casselholmde Salles M., Kvanta A., Amrén U., Epstein D. Optical coherence tomography angiography in central retinal vein occlusion: correlation between the foveal avascular zone and visual acuity. Invest Ophthalmol Vis Sci. 2016; 57 (9): OCT242-246. doi: 10.1167/iovs.15-18819
8. Accorinti M., Gilardi M., De Geronimo D., et al. Optical coherence tomography angiography findings in active and inactive ocular Behçet disease. Ocul. Immunol. Inflamm. 2019; 27: 1–12. doi: 10.1080/09273948.2019.1612452
9. Rao H.L., Pradhan Z.S., Suh M.H., et al. Optical coherence tomography angiography in glaucoma. J. Glaucoma. 2020; Feb 12. doi: 10.1097/IJG.0000000000001463 [Epub ahead of print]
10. Li M., Yang Y., Jiang H., et al. Retinal microvascular network and microcirculation assessments in high myopia. Am. J. Ophthalmol. 2017; 174: 56–67. doi: 10.1016/j.ajo.2016.10.018.
11. Yang Y., Wang J., Jiang H., et al. Retinal microvasculature alteration in high myopia. Invest. Ophthalmol. Vis. Sci. 2016; 57 (14): 6020–30. doi: 10.1167/iovs.16-19542
12. Guo Y., Sung M.S., Park S.W. Assessment of superficial retinal microvascular density in healthy myopia. Int. Ophthalmol. 2019; 39 (8): 1861–70. doi: 10.1007/s10792-018-1014-z
13. Mikoshiba Y., Iwase T., Ueno Y., et al. A randomized clinical trial evaluating choroidal blood flow and morphology after conventional and pattern scan laser panretinal photocoagulation. Sci. Rep. 2018; 8: 14128. doi: 10.1038/s41598018-32487-y
14. Yamada Y., Suzuma K., Onizuka N., et al. Evaluation of retinal blood flow before and after panretinal photocoagulation using pattern scan laser for diabetic retinopathy. Curr. Eye Res. 2017; 42 (12): 1707–12. doi: 10.1080/02713683.2017.1358373
15. Iwase T., Kobayashi M., Yamamoto K., Ra E., Terasaki H. Effects of photocoagulation on ocular blood flow in patients with severe non-proliferative diabetic retinopathy. PLoS One. 2017; 12 (3):e0174427. doi: 10.1371/journal.pone.0174427
Review
For citations:
Neroev V.V., Zakharova G.Yu., Okhotsimskaya T.D., Zueva M.V., Tsapenko I.V., Fadeeva V.A., Magamadov B.M. Clinical and functional state of the retina after inadequate laser coagulation of peripheral vitreochorioretinal dystrophies. Part 2. A study of microcirculation of the macular area. Russian Ophthalmological Journal. 2020;13(4):17-23. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-17-23