An experimental study of resveratrol effect on neurotrophic and structural changes in retinal ischemia
https://doi.org/10.21516/2072-0076-2020-13-4-39-47
Abstract
About the Authors
T. N. KiselevaRussian Federation
Tatyana N. Kiseleva — Dr. of Med. Sci., professor, head of ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. V. Chudin
Russian Federation
Anton V. Chudin — Cand. of Med. Sci., head of ophthalmology department
78, Respubliki St., Ishim, 627750
N. V. Balatskaya
Russian Federation
Natalya V. Balatskaja — Cand. of Med. Sci., head of the department of immunology and virology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. I. Shchipanova
Russian Federation
Aleksandra I. Shchipanova — Cand. of Biol. Sci., head of the experimental scientific center
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
I. P. Khoroshilova-Maslova
Russian Federation
Inna P. Khoroshilova-Maslova — Dr. of Med. Sci., professor, head of the department of pathological anatomy and histology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
M. S. Zaytsev
Russian Federation
Maksim S. Zaytsev — junior researcher of ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. M. Maybogin
Russian Federation
Artemiy M. Maybogin — pathologist of department of pathological anatomy and histology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
K. V. Lugovkina
Russian Federation
Kseniya V. Lugovkina — Cand. of Med. Sci., researcher of ultrasound diagnostic department
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Kiseleva T.N., Chudin А.V. Experimental modeling of ischemic injury of the eye. Vestnik RАMN. 2014; (11–12): 97–103 (In Russian).
2. Janáky M., Grósz A., Tóth E., Benedek K., Benedek G. Hypobaric hypoxia reduces the amplitude of oscillatory potentials in the human. ERG Documenta Ophthalmologica. 2007; 114 (1): 45–51. doi: 10.1007/s10633-006-9038-5
3. Oku H., Fukuhara M., Kurimoto T., et al. Endothelin-1 (ET-1) is increased in rat retina after crushing optic nerve. Current Eye Research. 2008; 33 (7): 611–20. https://doi.org/10.1080/02713680802213614
4. Tinjust D., Kergoat H., Lovasik J. Neuroretinal function during mild systemic hypoxia. Aviation, Space, and Environmental Medicine. 2002; 73 (12): 1189–94. PMID: 12498547
5. Carden D.L., Granger D.N. Pathophysiology of ischaemia-reperfusion injury. The journal of pathology. 2000 Feb; 90 (3): 255–66. doi: 10.1002/(SICI)10969896(200002)190:3<255::AID-PATH526>3.0.CO;2-6.
6. Gundorova R.A., Shvecova N.E., Ivanov A.N., et al. Model of retinal ischemia: clinical-functional and histological examination. Vestnik oftal'mologii. 2008; 73 (3): 18–23 (In Russian).
7. Kalamkarov G.R., Tsapenko I.V., Zueva M.V., et al. An experimental model of acute retinal ischemia in rats. Bjulleten' eksperimental'noj biologii i mediciny. 2008; 6: 634–8 (In Russian).
8. Steele E. C., Guo Q., Namura S. Filamentous middle cerebral artery occlusion causes ischemic damage to retina in mice. Stroke. 2008; 39 (7); 2099–104. https://doi.org/10.1161/STROKEAHA.107.504357
9. Ueda K., Makahara T., Hoshino M., Mori A., Sakamoto K. Retinal blood vessels are damaged in rat model of NMDA-induced retinal degeneration. Neuroscience Letters. 2010; 485 (1): 55–9. https://doi.org/10.1016/j.neulet.2010.08.061
10. Joachim S. C., Wax M. B., Boehm N., et al. Up-regulation of antibody response to heat shock proteins and tissue antigens in an ocular ischemia model. Invest. Ophthalmol. Vis. Sci. 2011 May; 52 (6): 3468–74. doi: 10.1167/iovs.10-5763
11. Liu Y., Song X., Zhang D., et al. Blueberry anthocyanins: protection against ageing and light-induced damage in retinal pigment epithelial cells. British journal of nutrition. 2012 Jul; 108 (1): 16–27. doi: 10.1017/S000711451100523X
12. Kiseleva T.N., Chudin A.V., Khoroshilova-Maslova I.P., et al. Morphological changes in retinal tissues during regional ischemia reperfusion in vivo in an experiment. Bjulleten' eksperemental'noj biologii i mediciny. 2019; 167 (2): 250–7 (In Russian).
13. Li C., Wang L., Huang K., Zheng L. Endoplasmic reticulum stress in retinal vascular degeneration: protective role of resveratrol. Invest. Ophthalmol. Vis. Sci. 2012 May; 53 (6): 3241–9. doi: 10.1167/iovs.11-8406
14. Vin A.P., Hu H., Zhai Y., et al. Neuroprotective effect of resveratrol prophylaxis on experimental retinal ischemic injury. Exp Eye Res. 2013 Mar; 108: 72–5. doi: 10.1016/j.exer.2012.11.022
15. Liu X.Q., Wu B.J., Pan W.H., et al. Resveratrol mitigates rat retinal ischemic injury: the roles of matrix metalloproteinase-9, inducible nitric oxide, and heme oxygenase-1. J. Ocul. Pharmacol. Ther. 2013 Feb; 29 (1): 33–40. doi:10.1089/jop.2012.0141
16. Huang W., Li G., Qiu J., Gonzalez P., Challa P. Protective effects of resveratrol in experimental retinal detachment. PLoS One. 2013 Sep; 8 (9): 725–35. doi: 10.1371/journal.pone.0075735
17. Kim Y.H., Kim Y.S., Kang S.S., Cho G.J., Choi W.S. Resveratrol inhibits neuronal apoptosis and elevated Ca2+ /calmodulin-dependent protein kinase II activity in diabetic mouse retina. Diabetes. 2010 Jul; 59 (7): 1825–35. doi: 10.2337/db09-1431
18. Luo H., Zhuang J., Hu P., et al. Resveratrol delays retinal ganglion cell loss and attenuates gliosis-related inflammation from ischemia-reperfusion injury Invest. Ophthalmol. Vis. Sci. 2018; 59 (10): 3879–38. https://doi.org/10.1167/iovs.18-23806
19. Luo J., He T., Yang J., et al. SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice. Graefes Arch. Clin. Exp. Ophthalmol. 2020; 258 (2): 335–44. https://doi.org/10.1007/s00417-019-04580
20. Seong H., Ryu J., Yoo W.S., Seo S.W. Resveratrol ameliorates retinal ischemia/ reperfusion injury in C57BL/6J mice via down regulation of Caspase-3. Current Eye Research. 2017; 42 (4): 1–9 https://doi.org/10.1080/02713683.2017.1344713
21. Cao R., Ishida T., Fang Y., et al. Protection of the retinal ganglion cells: intravitreal injection of Resveratrol in mouse model of ocular hypertension Invest. Ophthalmol. Vis. Sci. 2020 March; 61:13. https://doi.org/10.1167/iovs.61.3.13
22. Pirhan D., Yuksel N., Emre E., Cengiz A., Kursat Yildiz D. Riluzole- and resveratrolinduced delay of retinal ganglion cell death in an experimental model of glaucoma. Curr. Eye Res. 2016; 41: 59–69. https://doi.org/10.3109/02713683.2015.1004719
23. Statement for the Use of Animals in Ophthalmic and Vision Research.2016:10-35 Available at: http://www.arvo.org/About_ARVO/Policies/Statement_for_the_Use_of_Animals_in_Ophthalmic_and_Visual_Research/
24. Rybakova A.V., Makarova M.N., Kukharenko A.E., Vichare A.S., Rueffer F.R. Current Requirements for and Approaches to Dosing in Animal Studies. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2018; 8 (4): 207–17 (In Russian). https://doi.org/10.30895/1991-29192018-8-4-207-217
25. Hua J., Guerin K. I., Chen J., et al. Resveratrol inhibits pathological retinal revascularization in Vldlr(-/-) mice. Invest. Ophthalmol. Vis. Sci. 2011; 52 (5): 2809–16.
26. Lau J., Dang M., Hockmann K., Ball A.K. Effects of acute delivery of endothelin-1 on retinal ganglion cell loss in the rat. Exp. Eye Res. 2006; 82 (1): 132–45. https://doi.org/10.1016/j.exer.2005.06.002
Review
For citations:
Kiseleva T.N., Chudin A.V., Balatskaya N.V., Shchipanova A.I., Khoroshilova-Maslova I.P., Zaytsev M.S., Maybogin A.M., Lugovkina K.V. An experimental study of resveratrol effect on neurotrophic and structural changes in retinal ischemia. Russian Ophthalmological Journal. 2020;13(4):39-47. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-39-47