Modeling the atrophy of retinal pigment epithelium
https://doi.org/10.21516/2072-0076-2020-13-4-58-63
Abstract
About the Authors
N. V. NeroevaRussian Federation
Natalia V. Neroeva — Cand. of Med. Sci., researcher, department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
V. V. Neroev
Russian Federation
Vladimir V. Neroev — Academician of the RAS, Dr. Med. Sci., professor, head of the department of pathology of the retina and optic nerve, director
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
P. A. Ilyukhin
Russian Federation
Pavel A. Ilyukhin — Cand. of Med. Sci., researcher, department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. G. Karmokova
Russian Federation
Asiyat G. Karmokova — PhD student, department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
O. A. Losanova
Russian Federation
Oksana A. Losanova — PhD student, department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
M. V. Ryabina
Russian Federation
Marina V. Ryabina — Cand. of Med. Sci., researcher, department of pathology of the retina and optic nerve
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. M. Maybogin
Russian Federation
Artemy M. Maybogin — researcher, department of pathologic anatomy and histology
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. M'Barek B. K., Habeler W., Monville C. Stem cell-based RPE therapy for retinal diseases: engineering 3D tissues amenable for regenerative medicine. Adv. Exp. Med. Biol. 2018; 1074: 625–62. doi:10.1007/978-3-319-75402-4_76
2. Gazizova I.R., Alekseev V.N., Nikitin D.N. Experimental reproduction of the glaucomatous process. Oftal'mologicheskie vedomosti. 2013; 6 (3): 43–50 (in Russian).
3. Petters R.M., Alexander C.A., Wells K.D., et al. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat. Biotechnol. 1997; 15 (10): 965–70. doi: 10.1038/nbt1097-965
4. Chader G.J. Animal models in research on retinal degenerations: past progress and future hope. Vision Res. 2002; 42 (4): 393–9. doi: 10.1016/s00426989(01)00212-7
5. Kijas J.W., Cideciyan A.V., Aleman T.S., et al. Naturally occurring rhodopsin mutation in the dog causes retinal dysfunction and degeneration mimicking human dominant retinitis pigmentosa. Proc. Natl. Acad. Sci. USA. 2002; 99 (9): 6328–33. doi:10.1073/pnas.082714499
6. Sheremet N.L., Mikaelyan A.A., Andreev A.Yu., et al. Experimental damage of retinal pigment epithelium. Sovremennye tekhnologii v oftal'mologii. 2019; 3: 215–7 (in Russian). https://doi.org/10.25276/2312-4911-2019-3-215-217
7. Bhutto I.A., Ogura S., Baldeosingh R., et al. An acute injury model for the phenotypic characteristics of geographic atrophy. Invest. Ophthalmol. Vis. Sci. 2018; 59 (4): AMD143–AMD151. doi:10.1167/iovs.18-24245
8. Petrus-Reurer S., Bartuma H., Aronsson M., et al. Integration of subretinal suspension transplants of human embryonic stem cell-derived retinal pigment epithelial cells in a large-eyed model of geographic atrophy. Invest. Ophthalmol. Vis. Sci. 2017; 58 (2): 1314–22. doi:10.1167/iovs.16-20738
9. Mones J., Leiva M., Pena T., et al. A swine model of selective geographic atrophy of outer retinal layers mimicking atrophic AMD: a phase I escalating dose of subretinal sodium iodate. Invest. Ophthalmol. Vis. Sci. 2016; 57 (10): 3974–83. doi:10.1167/iovs.16-19355
10. Martin D.F., Maguire M.G., Fine S.L., et al. Ranibizumab and bevacizumab for treatment of neovascular age-related macular degeneration: two-year results. Ophthalmology. 2012; 119 (7): 1388–98. doi: https://doi.org/10.1016/j.ophtha.2012.03.053
11. Edelhauser H.F., Van Horn D.L., Hyindiuk R.A., et al. Intraocular irrigating solutions: their effect on the corneal endothelium. Arch. Ophthalmol. 1975; 93 (8): 648–57. doi:10.1001/archopht.1975.01010020614011
12. Merrill D.L., Fleming T.C., Girard L.J. The effects of physiologic balanced salt solutions and normal saline on intraocular and extraocular tissues. Am. Journ. of Ophthalmol. 1960; 49 (5): 895–8. https://doi.org/10.1016/00029394(60)91806-7
13. Breebaart A. C., Nuyts R. M., Pels E., et al. Toxic endothelial cell destruction of the cornea after routine extracapsular cataract surgery. Arch. of Ophthalmol. 1990; 108 (8): 1121–5. doi:10.1001/archopht.1990.01070100077038
14. Anisimova S.Yu., Zagrebel'naya L.V. Intraocular irrigation solutions: a comparative study of BSS and BSS Plus. 2010; 1 (1): 45–9 (in Russian).
15. Muraoka Y., Ikeda H.O., Nakano N., et al. Real-time imaging of rabbit retina with retinal degeneration by using spectral-domain optical coherence tomography. PLoS One. 2012; 7 (4): e36135. doi:10.1371/journal.pone.0036135
16. Famiglietti E.V., Sharpe S.J. Regional topography of rod and immunocytochemically characterized “blue” and “green” cone photoreceptors in rabbit retina. Vis. Neurosci. 1995; 12 (6): 1151–75. doi:10.1017/s0952523800006799
17. Neroeva N.V., Neroev V.V., Katargina L.A., et al. The method of modeling of atrophy of retinal pigment epithelium. Patent RF № 2709247; 2019 (in Russian).
18. Neroeva N.V., Neroev V.V., Zueva M.V., et al. The method of modeling of atrophy of retinal pigment epithelium. Patent RF № 2727000; 2020 (in Russian).
Review
For citations:
Neroeva N.V., Neroev V.V., Ilyukhin P.A., Karmokova A.G., Losanova O.A., Ryabina M.V., Maybogin A.M. Modeling the atrophy of retinal pigment epithelium. Russian Ophthalmological Journal. 2020;13(4):58-63. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-58-63