Preview

Russian Ophthalmological Journal

Advanced search

Multimodal imaging of hereditary retinal dystrophies (a series of clinical cases)

https://doi.org/10.21516/2072-0076-2020-13-4-75-82

Abstract

Multimodal visualization data of inherited retinal degeneration (IRD) on a Mirante platform (Nidek, Japan), used in a number of clinical cases, is compared with the data obtained by electrophysiological diagnostic methods. 4 patients with varying IRD were examined: adult-onset foveomacular vitelliform dystrophy, Stargardt disease, including those with fundus flavimaculatus, and retinitis pigmentosa. Multimodal imaging includes: colour fundus imaging, fundus autofluorescence, retro mode, and optical coherence tomography. Electroretinography was performed using an MBN electroretinograph (Russia), and electrooculography was performed using a RETIscan Science system (Roland Consult, Germany). Using non-invasive retinal imaging methods, specific patterns of inherited dystrophies were shown, which correlated well with the data of electrophysiological research methods. The combination of multimodal imaging on the Mirante platform (Nidek, Japan) in combination with electrophysiological diagnostic methods can be successfully used in complex diagnostics, monitoring of the progression, and evaluation of the results of IRD treatment.

About the Authors

S. V. Milash
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Sergei V. Milash — researcher, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



I. V. Zolnikova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Inna V. Zolnikova — Dr. of Med. Sci., senior research, Kravkov laboratory of clinical electrophysiology of vision

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



V. V. Kadyshev
Research Center for Medical Genetics
Russian Federation

Vitaly V. Kadyshev — Cand. of Med. Sci., senior research associate of the laboratory of clinical epidemiology

1, Moskvorechie st., Moscow, 115522



References

1. Duncan J.L., Pierce E.A., Laster A.M., et al. Inherited retinal degenerations: current landscape and knowledge gaps. Transl. Vis. Sci. Technol. 2018; 7 (4): 6. https://doi.org/10.1167/tvst.7.4.6

2. Ellingford J.M., Barton S., Bhaskar S., et al. Molecular findings from 537 individuals with inherited retinal disease. J. Med. Genet. 2016; 53 (11): 761–7. https://doi.org/10.1136/jmedgenet-2016-103837

3. Pichi F., Morara M., Veronese C., Nucci P., Ciardella A.P. Multimodal imaging in hereditary retinal diseases. J. Ophthalmol. 2013; 2013: 63435. https://doi.org/10.1155/2013/634351

4. Maurizio B.P., Pierluigi I., Stelios K., et al. Retro-mode imaging and fundus autofluorescence with scanning laser ophthalmoscope of retinal dystrophies. BMC Ophthalmol. 2012;12:8. https://doi.org/10.1186/1471-2415-12-8

5. Grob S., Yonekawa Y., Eliott D. Multimodal imaging of adult-onset foveomacular vitelliform dystrophy. Saudi J. Ophthalmol. 2014; 28 (2): 104–10. https://doi.org/10.1016/j.sjopt.2014.02.001

6. Gass J.D. A clinicopathologic study of a peculiar foveomacular dystrophy. Tran.s Am. Ophthalmol. Soc. 1974; 72: 139–56.

7. Tanna P., Strauss R.W., Fujinami K., Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br. J. Ophthalmol. 2017; 101: 25–30. https://dx.doi.org/10.1167%2Ftvst.8.2.16

8. Strauss R.W., Kong X., Ho A., et al. Progression of Stargardt disease as determined by fundus autofluorescence over a 12-month period: ProgStar Report No. 11. JAMA Ophthalmol. 2019; 137 (10): 1134–45. https://doi.org/10.1001/jamaophthalmol.2019.2885

9. Franceschetti A., François J. Fundus flavimaculatus. Arch. Ophtalmol. Rev. Gen. Ophtalmol. 1965; 25 (6): 505–30.

10. Voigt M., Querques G., Atmani K., et al. Analysis of retinal flecks in fundus flavimaculatus using high-definition spectral-domain optical coherence tomography. Am. J. Ophthalmol. 2010; 150 (3): 330–7. https://doi.org/10.1016/j.ajo.2010.04.001

11. Querques G., Leveziel N., Benhamou N., et al. Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br. J. Ophthalmol. 2006; 90 (9): 1157–62. https://doi.org/10.1136/bjo.2006.094136

12. Cideciyan A.V., Swider M., Aleman T.S., et al. ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. Invest. Ophthalmol. Vis. Sci. 2005; 46 (12): 4739–46. https://doi.org/10.1167/iovs.05-0805

13. Zol'nikova I.V., Milash S.V., Chernyak A.B., et al. Retinal postphotoreceptor layers and macular electroretinogram in retinitis pigmentosa. Oftal'mologiya. 2020; 17 (1): 81–7 (in Russian). https://doi.org/10.18008/1816-5095-2020-1-81-87

14. Zol'nikova I.V., Milash S.V., Chernyak A.B., et al. Thickness of the retinal photoreceptor layers and the choroid, and bioelectrical activity of the macula in retinitis pigmentosa. Vestnik oftal'mologii. 2019; 135 (3): 39–45 (in Russian). https://doi.org/10.17116/oftalma201913503139

15. Lima L.H., Cella W., Greenstein V.C., et al. Structural assessment of hyperautofluorescent ring in patients with retinitis pigmentosa. Retina. 2009; 29 (7): 1025–31. https://doi.org/10.1097/iae.0b013e3181ac2418

16. Strong S., Liew G., Michaelides M. Retinitis pigmentosa-associated cystoid macular oedema: pathogenesis and avenues of intervention. Br. J. Ophthalmol. 2017; 101 (1): 31–7. https://doi.org/10.1136/bjophthalmol-2016-309376


Review

For citations:


Milash S.V., Zolnikova I.V., Kadyshev V.V. Multimodal imaging of hereditary retinal dystrophies (a series of clinical cases). Russian Ophthalmological Journal. 2020;13(4):75-82. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-75-82

Views: 1212


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)