Preview

Russian Ophthalmological Journal

Advanced search

On the possible mechanisms of a positive effect on the retina of goggles with red filters in premature infants

https://doi.org/10.21516/2072-0076-2020-13-4-87-90

Abstract

In recent publications, positive results have been reported with the use of glasses with red protective filters in prematurely born infants with low body weight, which were presumably associated with a decrease in the levels of illumination of the environment of the child. However, to date, it has not been proven that a decrease in the amount of light reaching the retina of the newborn affects the frequency and severity of retinopathy of prematurity (RP). The analysis of the literature on the therapeutic effect of various modes of red and near infrared radiation on the retina is presented, which allowed a different look at the protective mechanisms of glasses-filters in premature babies. It has been suggested and substantiated that the observed effect may relate to the phenomenon of pre-conditioning photostimulation, which reduces the risk of developing RP and reduces the severity of the disease due to the induction of adaptive plastic reactions in the retina.

About the Authors

M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Marina V. Zueva — Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



O. A. Ushnikova
State Budgetary Institution “Regional Children's Clinical Hospital”
Russian Federation

Olga A. Ushnikova — ophthalmologist

14, 339th Rifle Division St., Rostov on Don, 344015



L. A. Katargina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Lyudmila A. Katargina — Dr. of Med. Sci., professor, deputy director for science, head of the department of eye pathology in children

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Katargina L.A. Retinopathy of prematurity, the current state of the problem and the problem of organization of ophthalmological care for premature children in Russia. Rossijskaya pediatricheskaya oftal'mologiya. 2012; 1: 5–7 (in Russian).

2. Saydasheva E.I., Gorelik Yu.V., Buyanovskaya S.V., Kovshov F.V. Retinopathy of prematurity: features of the course and results of treatment in children with a gestation period of less than 27 weeks. Rossijskaya pediatricheskaya oftal'mologiya. 2015; 2 (10): 28–32 (in Russian).

3. Neroev V.V., Katargina L.A., Kogoleva L.V. The prevention of blindness and visual impairment in children with retinopathy of prematurity. Current Pediatrics. 2015; 14 (2): 265–70 (in Russian). doi: 10.15690/vsp.v14i2.1296

4. Wong R.O.L. Retinal waves and visual system development. Annu. Rev. Neurosci. 1999; 22: 29–47. https://doi.org/10.1146/annurev.neuro.22.1.29

5. Tian N. Visual experience and maturation of retinal synaptic pathways. Vis. Res. 2004; 44 (28): 33. doi: 10.1016/j.visres.2004.07.041

6. Moskowitz A., Hansen R., Fulton A. Retinal, visual, and refractive development in retinopathy of prematurity. Eye and Brain. 2016; 8: 103–1. doi: 10.2147/EB.S9502

7. Grimm C., Remé C.E. Light damage models of retinal degeneration. Methods Mol. Biol. 2019; 1834: 167–78. doi: 10.1007/978-1-4939-8669-9_12

8. Reynolds J.D., Hardy R.J., Kennedy K.A., et al. Lack of efficacy of light reduction in preventing retinopathy of prematurity. Light Reduction in Retinopathy of Prematurity (LIGHT-ROP) Cooperative Group. N. Engl. J. Med. 1998; 338 (22): 1572–6. doi: 10.1056/NEJM199805283382202

9. The Effects of Light Reduction on Retinopathy of Prematurity (Light-ROP). ClinicalTrials.gov Identifier: NCT00000156. First Posted: September 24, 1999. Last Update Posted: June 5, 2006. https://clinicaltrials.gov/ct2/show/NCT00000156

10. Jorge E.C, Jorge E.N., El Dib R.P. Early light reduction for preventing retinopathy of prematurity in very low birth weight infants. Cochrane Database of Systematic Reviews. 2013; (8). Art. No.: CD000122. doi: 10.1002/14651858.CD000122.pub2

11. Zueva M.V., Kogoleva L.V., Katargina L.A. Russian ophthalmological journal. 2020; 13 (1): 77–84 (in Russian). https://doi.org/10.21516/2072-0076-2020-13-1-77-84

12. Epikhin A.N., Epikhina Yu.N., Ushnikova O.A., Ushnikov A.N. The use of filter glasses in the prevention of the development and progression of retinopathy of prematurity. Rossijskaya pediatricheskaya oftal'mologiya. 2018; (1): 6–13 (in Russian). http://dx.doi.org/10.18821/1993-1859-2018-13-1-6-13

13. Epikhin A.N., Epikhina Yu.N., Ushnikova O.A., Ushnikov A.N. The use of glasses with red protective filters, as a method of preventing the development and progression of retinopathy of premature babies. Preliminary results. Ophthalmology in Russia. 2020; 17 (4): 390–6 (in Russian).

14. Agrawal T., Gupta G.K., Rai V., Carroll J.D., Hamblin M.R. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response. 2014 Dec; 12 (4): 619–49. doi:10.2203/dose-response.14-032.Agrawal

15. Zueva M.V., Rapoport S.I., Tsapenko I.V., et al. Alterations of physiological rhythms in neurodegenerative diseases: problems and prospects of light therapy. Klinicheskaya meditsina. 2016; 94 (6): 427–32 (in Russian).

16. Narayanan S.V., Dave K.R., Perez-Pinzon M.A. Ischemic preconditioning and clinical scenarios. Curr. Opin. Neurol. 2013; 26 (1): 1–7. doi: 10.1097/WCO.0b013e32835bf200

17. Gidday J.M. Adaptive plasticity in the retina: protection against acute injury and neurodegenerative disease by conditioning stimuli. Cond. Med. 2018 Feb; 1 (2): 85–97. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696944/

18. Das M., Das D.K. Molecular mechanism of preconditioning. IUBMB Life. 2008; 60 (4): 199–203. doi: 10.1002/iub.31

19. Koch S., Della-Morte D., Dave K.R., Sacco R.L., Perez-Pinzon M.A. Biomarkers for ischemic preconditioning: finding the responders. J. Cereb. Blood. Flow Metab. 2014; 34 (6): 933–41. doi: 10.1038/jcbfm.2014.42

20. Johnstone D.M., Moro C., Stone J., Benabid A.-L., Mitrofanis J. Turning on lights to stop neurodegeneration: the potential of near infrared light therapy in Alzheimer’s and Parkinson’s disease. Front. Neurosci. 2016; 9. Art. No 500. https://doi.org/10.3389/fnins.2015.00500

21. Eells J.T., Wong-Riley M.T., VerHoeve J., et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004; 4: 559–67. doi:10.1016/j.mito.2004.07.033

22. Natoli R., Zhu Y., Valter K., et al. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010; 16: 1801–22. PMID: 20844572

23. Natoli R., Valter K., Barbosa M., et al. 670 nm photobiomodulation as a novel protection against retinopathy of prematurity: evidence from oxygen induced retinopathy models. PLoS ONE. 2013; 8 (8): e72135. doi: 10.1371/journal.pone.0072135

24. Albarracin R., Natoli R., Rutar M., Valter K., Provis J. 670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina. BMC Neurosci. 2013; 14: 125. doi: 10.1186/1471-2202-14-125

25. Begum R., Powner M.B., Hudson N., Hogg C., Jeffery G. Treatment with 670 nm light upregulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PLoS ONE. 2013; 8:e57828. doi: 10.1371/journal.pone.0057828

26. Gkotsi D., Begum R., Salt T., et al. Recharging mitochondrial batteries in old eyes. Near infra-red increases ATP. Exp. Eye Res. 2014; 122: 50–3. doi: 10.1016/j.exer.2014.02.023

27. Fitzgerald M., Bartlett C.A., Payne S.C., et al. Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. J. Neurotrauma. 2010; 27 (11): 2107–19. doi: 10.1089/neu.2010.1426

28. Quirk B.J., Desmet K.D., Henry M., et al. Therapeutic effect of near infrared (NIR) light on Parkinson’s disease models. Front. Biosci. (Elite. Ed). 2012; 4: 818–23. PMID: 22201916

29. Ying R., Liang H.L., Whelan H.T., Eells J.T., Wong-Riley M.T. Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity. Brain Res. 2008; 1243: 167–73. doi:10.1016/j.brainres.2008.09.057

30. Albarracin R., Eells J., Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 2011; 52: 3582–92. doi:10.1167/iovs.10-6664

31. Albarracin R., Valter K. 670 nm red light preconditioning supports Muller cell function: evidence from the white light-induced damage model in the rat retina. Photochem. Photobiol. 2012; 88 (6): 1418–27. doi: 10.1111/j.17511097.2012.01130.x

32. Giacci M.K., Wheeler L., Lovett S., et al. Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS ONE. 2014; 9 (8): e104565. doi:10.1371/journal.pone.0104565


Review

For citations:


Zueva M.V., Ushnikova O.A., Katargina L.A. On the possible mechanisms of a positive effect on the retina of goggles with red filters in premature infants. Russian Ophthalmological Journal. 2020;13(4):87-90. (In Russ.) https://doi.org/10.21516/2072-0076-2020-13-4-87-90

Views: 686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)