Optical Coherence Tomography Angiography (OCTA) information content in the diagnosis of type 1 choroidal neovascularization combined with pigment epithelium detachment
https://doi.org/10.21516/2072-0076-2021-14-1-42-46
Abstract
Purpose of the study is to determine the reliability of OCT angiography in the diagnosis of type 1 choroidal neovascularization (CNV) in wet age-related macular degeneration depending on the height of pigment epithelium detachment (PED).
Material and methods. The study included 82 patients (114 eyes) with confirmed type 1 CNV, who were examined using spectral OCT and OCTA. The patients were divided into two groups depending on PED height: group 1 consisted of 69 eyes with PED height less than 300 μm, while group 2 (45 eyes) had PED height of more than 300 μm. A separate comparative analysis of the visualization of pathological vessels was made in a group of untreated patients (56 eyes) and a group of patients (58 eyes) treated with angiogenesis inhibitors.
Results. In group 1 with a PED height less than 300 μm (167.0 ± 60.4 μm) OCTA detected blood flow along abnormal vessels in 100 % of cases. In group 2 with a PED height above 300 μm (484.7 ± 131.9 μm) CNV vessels were visualized in 24.4 % of eyes. The PED height of patients after intravitreal injections of angiogenesis inhibitors (IVI IA) ranged from 38 to 683 μm (221 ± 133 μm). According to OCTA visualization of type 1 CNV vasculature was noted in 55 eyes (94.8 %). In patients who received no antiangiogenic therapy, with a PED height 59 - 800 μm (238 ± 149 μm) CNV was visualized in 41 % of cases (23 eyes).
Conclusion. OCTA showed high reliability in the diagnosis of type 1 CNV with low PED. This method was significantly less informative when the height of the neovascular PED exceeded 300 μm, with the exception of PED after IVI IA.
About the Authors
V. V. NeroevRussian Federation
Vladimir V. Neroev — Academician of the Russian Academy of Sciences, Dr. of Med. Sci., professor, director Helmholtz NMRCED, head of chair of ophthalmology.
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062; 20/1, Delegatskaya st., Moscow, 127473
M. V. Ryabina
Russian Federation
Marina V. Ryabina — Cand. of Med. Sci., senior researcher, department of retinal and optic nerve pathology.
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062
A. P. Sarygina
Russian Federation
Anna P. Sarygina — researcher, department of retinal and optic nerve pathology.
14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062
References
1. Neroev V.V. Russia’s nationwide epidemiological noninvasive study of patients with wet age-related macular degeneration. Russian ophthalmological journal. 2011; 4 (2): 4–9 (in Russian).
2. Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Macular Photocoagulation Study Group. Arch. Ophthalmol. 1991; 109 (9): 1220–31. doi:10.1001/archopht.1991.01080090044025
3. Grossniklaus H.E., Gass J.D. Clinicopathologic correlations of surgically excised type 1 and type 2 submacular choroidal neovascular membranes. Am. J. Ophthalmol. 1998; 126 (1): 59–69. doi:10.1016/s0002-9394(98)00145-7
4. Gass J.D. Biomicroscopic and histopathologic considerations regarding the feasibility of surgical excision of subfoveal neovascular membranes. Trans. Am. Ophthalmol. Soc. 1994; 92: 91–116.
5. Freund K.B., Zweifel S.A., Engelbert M. Do we need a new classification for choroidal neovascularization in age-related macular degeneration? Retina. 2010 Oct; 30 (9): 1333–49. doi: 10.1097/IAE.0b013e3181e7976b. Erratum in: Retina. 2011 Jan; 31 (1): 208. PMID: 20924258
6. Miere A., Querques G., Semoun O., et al. Optical coherence tomography angiography changes in early type 3 neovascularization after anti-vascular endothelial growth factor treatment. Retina. 2017; 37 (10): 1873–9. doi:10.1097/IAE.0000000000001447
7. Mrejen S., Sarraf D., Mukkamala S.K., Freund K.B. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013; 33 (9): 1735–62. doi:10.1097/IAE.0b013e3182993f66
8. Jung J.J., Chen C.Y., Mrejen S., et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration. Am. J. Ophthalmol. 2014; 158 (4): 769–79. e2. doi:10.1016/j.ajo.2014.07.006
9. Occult choroidal neovascularization. Influence on visual outcome in patients with age-related macular degeneration. Macular Photocoagulation Study Group [published correction appears in Arch. Ophthalmol. 1996 Aug; 114 (8): 1023]. Arch. Ophthalmol. 1996; 114 (4): 400–12.
10. Bressler N.M., Bressler S.B., Fine S.L. Age-related macular degeneration. Surv. Ophthalmol. 1988; 32 (6): 375–413. doi:10.1016/0039-6257(88)90052-5
11. Kuhn D., Meunier I., Soubrane G., Coscas G. Imaging of chorioretinal anastomoses in vascularized retinal pigment epithelium detachments. Arch. Ophthalmol. 1995; 113 (11): 1392–8. doi:10.1001/archopht.1995.01100110052025
12. Slakter J.S., Yannuzzi L.A., Schneider U., et al. Retinal choroidal anastomoses and occult choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2000; 107 (4): 742–54. doi:10.1016/s0161-6420(00)00009-9
13. Yannuzzi L.A., Slakter J.S., Sorenson J.A., Guyer D.R., Orlock D.A. Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992; 12 (3): 191–223.
14. Spaide R.F., Yannuzzi L.A., Slakter J.S., et al. Indocyanine green videoangiography of idiopathic polypoidal choroidal vasculopathy. Retina. 1995; 15:100–10.
15. Yannuzzi L.A., Wong D.W., Sforzolini B.S., et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch. Ophthalmol. 1999; 117 (11): 1503–10. doi:10.1001/archopht.117.11.1503
16. Cohen S.Y., Dubois L., Quentel G., Gaudric A. Is indocyanine green angiography still relevant? Retina. 2011; 31 (2): 209–221. doi:10.1097/IAE.0b013e31820a69db
17. Coscas G.J., Lupidi M., Coscas F., Cagini C., Souied E.H. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: a new diagnostic challenge. Retina. 2015; 35 (11): 2219–28. doi:10.1097/IAE.0000000000000766
18. Lumbroso B., Huang D., Chen C.J., et al. Clinical OCT Angiography Atlas. New Delhi, 2015.
19. Shaimov T.B., Panova I.E., Shaimov R.B., et al. Optical coherence tomography angiography in the diagnosis of neovascular age-related macular degeneration. Vestnik oftal’mologii. 2015; 131 (5): 4–12 (In Russian). https://doi.org/10.17116/oftalma201513154-12
20. Coscas G., Lupidi M., Coscas F., et al. Optical coherence tomography angiography during follow-up: qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy. Ophthalmic Res. 2015; 54 (2): 57–63. doi:10.1159/000433547
21. Mrejen S., Giocanti-Auregan A., Tabary S., Cohen S.Y. Sensitivity of 840-nm spectral domain optical coherence tomography angiography in detecting type 1 neovascularization according to the height of the associated pigment epithelial detachment. Retina. 2019; 39 (10): 1973–84. doi:10.1097/IAE.0000000000002244
22. Mrejen S., Sarraf D., Mukkamala S.K., Freund K.B. Multimodal imaging of pigment epithelial detachment: a guide to evaluation. Retina. 2013; 33 (9): 1735–62. doi:10.1097/IAE.0b013e3182993f66
Review
For citations:
Neroev V.V., Ryabina M.V., Sarygina A.P. Optical Coherence Tomography Angiography (OCTA) information content in the diagnosis of type 1 choroidal neovascularization combined with pigment epithelium detachment. Russian Ophthalmological Journal. 2021;14(1):42-46. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-1-42-46