Preview

Russian Ophthalmological Journal

Advanced search

Pathophysiological features of the visual cycle, cascade and metabolic pathways in retinitis pigmentosa

https://doi.org/10.21516/2072-0076-2021-14-1-80-88

Abstract

This literature review offers a detailed description of the genes and proteins involved in pathophysiological processes in isolated retinitis pigmentosa (RP). To date, 84 genes and 7 candidate genes have been described for non-syndromic RP. Each of these genes encodes a protein that plays a role in vital processes in the retina and / or retinal pigment epithelium, including the cascade of phototransduction (transmission of the visual signal), the visual cycle, ciliary transport, the environment of photoreceptor cilia and the interphotoreceptor matrix. The identification and study of pathophysiological pathways affected in non-syndromic RP is important for understanding the main pathogenic ways and developing approaches to target treatment.

About the Authors

M. E. Weener
Oftalmic LLC
Russian Federation

Marianna E. Weener — Cand. of Med. Sci., head.

47/3-3, Leningradsky Prospekt, Moscow, 125167



D. S. Atarshchikov
Central Clinical Hospital under President Affairs
Russian Federation

Dmitry S. Atarshchikov — Cand. of Med. Sci., ophthalmologist.

15, Marshala Timoshenko st., Moscow, 121359



V. V. Kadyshev
Research Centre for Medical Genetics
Russian Federation

Vitaly V. Kadyshev — Cand. of Med. Sci., ophthalmogeneticist.

1, Moskvorechie st., Moscow, 115522



I. V. Zolnikova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Inna V. Zolnikova — Dr. of Med. Sci., ophthalmologist, senior research assistant.

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. M. Demchinsky
Autonomous nonprofit organization Scientific and industrial laboratory Sensor technology for deafblind
Russian Federation

Andrey M. Demchinsky — Cand. of Med. Sci., chief of medical projects.

2, build. 3, Paveletskaya nab., Moscow, 115114



D. Barh
Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB)
India

Debmalya Barh — PhD, head.

560032 Nonakuri, Purba Medinipur, West Bengal



L. M. Balashova
International Scientific and Practical Center for the Proliferation of Tissues of Russia
Russian Federation

Larisa M. Balashova — Dr. of Med. Sci., head.

29/14, Prechistenka St., Moscow, 119034



J. M. Salmasi
Russian N.I. Pirogov National Research Medical University
Russian Federation

Jean M. Salmasi — Dr. of Med. Sci., professor, head of chair.

1, Ostrovityanova st., Moscow,117513



References

1. Pagon R.A., Retinitis pigmentosa. Surv. Ophthalmol. 1988; 33: 137–77.

2. Na K.H., Kim H.J., Kim K.H., et al. Prevalence, age at diagnosis, mortality and cause of death in retinitis pigmentosa in Korea — a nationwide population- based study. Am. J. Ophthalmol. 2017; 176: 157–65. doi: 10.1016/j.ajo.2017.01.014.

3. Nangia V., Jonas J.B., Khare A., et al. Prevalence of retinitis pigmentosa in India: the Central India Eye and Medical Study. Acta Ophthalmolю 2012; 90 (8): e649-50. doi: 10.1111/j.1755-3768.2012.02396.x

4. Donders F. Beiträge zur pathologischen Anatomie des Auges. Graefe's Archive for Clinical and Experimental Ophthalmology. 1857; 3: 139–65.

5. Ovelgün R.F. Nyctalopia haereditaria. Acta physico-medica Academiae Caesareae Leopoldino-Carolinae (Norimbergae). 1744; 7: 76–7.

6. Schon M. Handbuch der pathologischen Anatomie des menschliches Auges. Hamburg, West Germany; 1828.

7. Von Ammon F.A. Klinische Darstellungen der Krankheiten und Bildungsfehler des menschlichen Auges. 1838.

8. Dryja T.P., McGee T.L., Reichel E., et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990; 343: 364–6.

9. Padnick-Silver L., Kang Derwent J.J., Giuliano E., et al. Retinal oxygenation and oxygen metabolism in Abyssinian cats with a hereditary retinal degeneration. Invest. Ophthalmol. Vis. Sci. 2006; 47: 3683–9.

10. Shamshinova A.M. Retinitis pigmentosa, or tapetoretinal abiotrophy. In: Shamshinova A.M., ed. Hereditary and congenital retinal diseases. Moscow: Meditsina; 2001: 134–51 (In Russian).

11. Shamshinova A.M., Zol'nikova I.V. Molecular basis of hereditary retinal diseases. Meditsinskaya genetika. 2004; 4: 160–9 (in Russian).

12. Zol'nikova I.V. Up-todate electrophysiological and psychophysical diagnostic methods of retinal dystrophies (literature review). Oftal'mokhirurgiya i terapiya. 2004; 2: 30–40 (in Russian).

13. Zolnikova I.V. Multifocal and chromatic macular electroretinogram in the diagnostics of retinitis pigmenosa. Vestnik novykh meditsinskikh tekhnologij. 2009; 16 (3): 171–4 (in Russian).

14. Zolnikova I.V., Demenkova O.N., Rogatina E.V., et al. Bioelectric activity of the macula and light sensitivity in retinitis pigmentosa with foveal atrophy and cystoid macular oedema. Russian ophthalmological journal. 2016; 1: 12–8 (in Russian). https://doi.org/10.21516/2072-0076-2016-9-1-12-18

15. Zolnikova I.V., Ivanova M.E., Strelnikov V.V., et al. Variability of clinical and functional manifestations of the phenotype of Usher syndrome of 2A type (USH2A) with molecular and genetic verification of the diagnosis. Russian Ophthalmological Journal. 2014; 7 (2): 83–9 (in Russian).

16. Zolnikova I.V., Strelnikov V.V., Skvortsova N.A., et al. Stargardt diseaseassociated mutation spectrum of a Russian Federation cohort. Eur. J. Med. Genet. 2017; 60 (2): 140–7. doi: 10.1016/j.ejmg.2016.12.002

17. Ivanova M.E., Zolnikova I.V., Gorgisheli K.V., et al. Novel frameshift mutation in NYX gene in a Russian family with complete congenital stationary night blindness. Ophthalmic Genetics. 2019; 40 (6): 558–63. doi: 10.1080/13816810.2019.1698617

18. Ivanova M.E., Atarshchikov D.S., Pomerantseva E.A., et al. Whole exome sequencing reveals novel EYS mutations in Russian patients with autosomal recessive retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2020; 61 (7): 556. https://iovs.arvojournals.org/article.aspx?articleid=2769632

19. Demchinsky A.M., Shaimov T.B., Goranskaya D.N., et al. The first deaf-blind patient in Russia with Argus II retinal prosthesis system: what he sees and why. Journal of Neural Engineering. 2019; 16 (2): 025002.doi:10.1088/1741-2552/aafc76

20. Cohen A.I. The fine structure of the extrafoveal receptors of the Rhesus monkey. Exp. Eye Res. 1961; 1: 128–36.

21. Sjostrand F.S. The ultrastructure of the outer segments of rods and cones of the eye as revealed by the electron microscope. J. Cell Comp. Physiol. 1953; 42: 15–44.

22. Goldberg N.R., Greenberg J.P., Laud K., et al. Outer retinal tubulation in degenerative retinal disorders. Retina. 2013; 33: 1871–6.

23. Ding J.D., Salinas R.Y., Arshavsky V.Y. Discs of mammalian rod photoreceptors form through the membrane evagination mechanism. J. Cell Biol. 2015; 211: 495–502.

24. Saishin Y., Ishikawa R., Ugawa S., et al. Retinal fascine: functional nature, subcellular distribution, and chromosomal localization. Invest. Ophthalmol. Vis. Sci. 2000; 41: 2087–95.

25. Tubb B.E., Bardien-Kruger S., Kashork C.D., et al. Characterization of human retinal fascin gene (FSCN2) at 17q25: close physical linkage of fascin and cytoplasmic actin genes. Genomics 2000; 65: 146–56.

26. Edrington T.C.t., Lapointe R., Yeagle P.L., et al. Peripherin-2: an intracellular analogy to viral fusion proteins. Biochemistry. 2007; 46: 3605–13.

27. Salinas R.Y., Pearring J.N., Ding J.D., et al. Photoreceptor discs form through peripherin-dependent suppression of ciliary ectosome release. J. Cell Biol. 2017; 216: 1489–99.

28. Fetter R.D., Corless J.M. Morphological components associated with frog cone outer segment disc margins. Invest. Ophthalmol. Vis. Sci. 1987; 28: 646–57.

29. Yang Z., Chen Y., Lillo C. et al. Mutant prominin 1 found in patients with macular degeneration disrupts photoreceptor disk morphogenesis in mice. J. Clin. Invest. 2008; 118: 2908–16.

30. Liu Q., Lyubarsky A., Skalet J.H., et al. RP1 is required for the correct stacking of outer segment discs. Invest. Ophthalmol. Vis. Sci. 2003; 44: 4171–83.

31. Yamashita T., Liu J., Gao J., et al. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa. J. Neurosci. 2009; 29: 9748–60.

32. Satir P., Christensen S.T. Structure and function of mammalian cilia. Histochem. Cell Biol. 2008; 129: 687–93.

33. Berbari N.F., O'Connor A.K., Haycraft C.J., et al. The primary cilium as a complex signaling center. Curr. Biol. 2009; 19: R526–35.

34. Berson E.L. Retinitis pigmentosa and allied diseases: applications of electroretinographic testing. Int. Ophthalmol. 1981; 4: 7–22.

35. Singla V., Reiter J.F. The primary cilium as the cell's antenna: signaling at a sensory organelle. Science. 2006; 313 (80): 629–33.

36. Reiter J.F., Leroux M.R. Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 2017; 18 (9): 533–47. doi: 10.1038/nrm.2017.60

37. Roepman R., Wolfrum U. Protein Networks and Complexes in Photoreceptor Cilia. In: Bertrand E., Faupel M., eds. Subcellular Proteomics. Subcellular Biochemistry. Springer, Dordrecht. 2007; 43: 209–25. https://doi.org/10.1007/978-1-4020-5943-8_10

38. Taschner M., Bhogaraju S., Lorentzen E. Architecture and function of IFT complex proteins in ciliogenesis. Differentiation. 2012 Feb; 83 (2): S12–22. doi: 10.1016/j.diff.2011.11.001

39. Estrada-Cuzcano A., Roepman R., Cremers F.P., et al. Non-syndromic retinal ciliopathies: translating gene discovery into therapy. Hum. Mol. Genet. 2012 Oct 15; 21(R1): R111–24. doi: 10.1093/hmg/dds298

40. Sokolov M., Lyubarsky A.L., Strissel K.J., et al. Massive light-driven translocation of transducin between the two major compartments of rod cells: a novel mechanism of light adaptation. Neuron. 2002; 34: 95–106. https://doi.org/10.1016/S0896-6273(02)00636-0

41. Testa F., Rossi S., Colucci R., et al. Macular abnormalities in Italian patients with retinitis pigmentosa. Br. J. Ophthalmol. 2014 Jul; 98 (7): 946–50. doi: 10.1136/bjophthalmol-2013-304082

42. Murphy D., Singh R., Kolandaivelu S., et al. Alternative splicing shapes the phenotype of a mutation in BBS8 to cause nonsyndromic retinitis pigmentosa. Mol. Cell. Biol. 2015; 35: 1860–70.

43. Pretorius P.R., Aldahmesh M.A., Alkuraya F.S., et al. Functional analysis of BBS3 A89V that results in non-syndromic retinal degeneration. Hum. Mol. Genet. 2011; 20 (8): 1625–32. https://doi.org/10.1093/hmg/ddr039

44. Riazuddin S.A., Iqbal M., Wang Y., et al. A splice-site mutation in a retinaspecific exon of BBS8 causes nonsyndromic retinitis pigmentosa. Am. J. Hum. Genet. 2010; 86 (5): 805–12. doi:10.1016/j.ajhg.2010.04.001

45. Emmer B.T., Maric D., Engman D.M. Molecular mechanisms of protein and lipid targeting to ciliary membranes. J. Cell Sci. 2010 Feb 15; 123 (Pt 4): 529–36. doi: 10.1242/jcs.062968

46. Takao D., Verhey K.J. Gated entry into the ciliary compartment. Cell. Mol. Life Sci. 2016 Jan; 73 (1): 119–27. doi: 10.1007/s00018-015-2058-0

47. Megaw R.D., Soares D.C., Wright A.F. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp. Eye Res. 2015 Sep; 138: 32–41. doi: 10.1016/j.exer.2015.06.007

48. Eblimit A., Nguyen T.M., Chen Y., et al. Spata7 is a retinal ciliopathy gene critical for correct RPGRIP1 localization and protein trafficking in the retina. Hum. Mol. Genet. 2015 Mar 15; 24 (6): 1584–601. doi: 10.1093/hmg/ddu573

49. Gurevich V.V., Gurevich E.V., Cleghorn W.M. Arrestins as multi-functional signaling adaptors. Handb Exp Pharmacol. 2008; (186): 15–37. doi: 10.1007/978-3-540-72843-6_2

50. Krispel C.M., Chen D., Melling N., et al. RGS expression rate-limits recovery of rod photoresponses. 2006 Aug 17; 51 (4): 409–16. doi: 10.1016/j.neuron.2006.07.010

51. Haeseleer F., Sokal I., Li N., et al. Molecular characterization of a third member of the guanylyl cyclase-activating protein subfamily. J. Biol. Chem. 1999 Mar 5; 274 (10): 6526–35. doi: 10.1074/jbc.274.10.6526

52. Tachibanaki S., Arinobu D., Shimauchi-Matsukawa Y., et al. Highly effective phosphorylation by G protein-coupled receptor kinase 7 of light-activated visual pigment in cones. PNAS. June 28, 2005; 102 (26): 9329–34. https://doi.org/10.1073/pnas.0501875102

53. Tang P.H., Kono M., Koutalos Y., et al. New insights into retinoid metabolism and cycling within the retina. Prog. Retin. Eye Res. 2013 Jan; 32: 48–63. doi: 10.1016/j.preteyeres.2012.09.002

54. Kaylor J.J., Cook J.D., Makshanoff J., et al. Identification of the 11-cis-specific retinyl-ester synthase in retinal Muller cells as multifunctional O-acyltransferase (MFAT). Proc .Natl. Acad. Sci. USA. 2014 May 20; 111 (20): 7302–7. doi: 10.1073/pnas.1319142111

55. Stecher H., Gelb M.H., Saari J.C., et al. Preferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehydebinding protein. J. Biol. Chem. 1999 Mar 26; 274 (13): 8577–85. doi: 10.1074/jbc.274.13.8577

56. Saari J.C., Nawrot M., Stenkamp R.E., et al. Release of 11-cis-retinal from cellular retinaldehyde-binding protein by acidic lipids. Mol. Vis. 2009; 15: 844–54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2672148/

57. Hollyfield J.G. Hyaluronan and the functional organization of the interphotoreceptor matrix. Invest. Ophthalmol. Vis. Sci. 1999; 40: 2767–9. https://iovs.arvojournals.org/article.aspx?articleid=2199826

58. Hageman G.S., Marmor M.F., Yao X.Y., et al. The interphotoreceptor matrix mediates primate retinal adhesion. Arch. Ophthal. 1995;113 (5): 655–60. doi:10.1001/archopht.1995.01100050123041

59. Marmor M.F., Yao X.Y., Hageman G.S., et al. Retinal adhesiveness in surgically enucleated human eyes. Retina. 1994;14 (2): 181–6. doi: 10.1097/00006982-199414020-00014

60. Ishikawa M., Sawada Y., Yoshitomi T., et al. Structure and function of the interphotoreceptor matrix surrounding retinal photoreceptor cells. Exp. Eye Res. 2015 Apr; 133: 3–18. doi: 10.1016/j.exer.2015.02.017

61. Collin R.W., Littink K.W., Klevering B.J., et al. Identification of a 2 Mb human ortholog of Drosophila eyes shut/spacemaker that is mutated in patients with retinitis pigmentosa. Am. J. Hum. Genet. 2008; 83: 594–603.

62. den Hollander A.I., McGee T.L., Ziviello C., et al. A homozygous missense mutation in the IRBP gene (RBP3) associated with autosomal recessive retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2009 Apr; 50 (4): 1864–72. doi: 10.1167/iovs.08-2497

63. Littink K.W., van den Born L.I., Koenekoop R.K., et al. Mutations in the EYS gene account for approximately 5 % of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology. 2010 Oct; 117 (10): 2026–33. doi: 10.1016/j.ophtha.2010.01.040

64. van Huet R.A., Collin R.W., Siemiatkowska A.M., et al. IMPG2-associated retinitis pigmentosa displays relatively early macular involvement. Invest. Ophthalmol. Vis. Sci. June 2014; 55: 3939–53. doi:https://doi.org/10.1167/iovs.14-14129

65. Alfano G., Kruczek P.M., Shah A.Z., et al. EYS is a protein associated with the ciliary axoneme in rods and cones. PLoS One 2016; 11 (1): e0166397 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5112921/


Review

For citations:


Weener M.E., Atarshchikov D.S., Kadyshev V.V., Zolnikova I.V., Demchinsky A.M., Barh D., Balashova L.M., Salmasi J.M. Pathophysiological features of the visual cycle, cascade and metabolic pathways in retinitis pigmentosa. Russian Ophthalmological Journal. 2021;14(1):80-88. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-1-80-88

Views: 1210


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)