Preview

Russian Ophthalmological Journal

Advanced search

Current assessment results of the efficacy and safety of scleroplasty in progressive myopia

https://doi.org/10.21516/2072-0076-2021-14-1-96-103

Abstract

The purpose of the review is to analyze the data of recent studies (performed in the last two decades) of the efficacy and safety of sclera reinforcement surgeries for progressive myopia in children and adults. Short-term and long-term observation results are presented, indicating the impact of the initial degree of myopia, the patient's age, surgical technique and the choice of plastic material on the outcome of the intervention and the further course of the myopic process. The advantages of a biologically active synthetic graft are described, which makes it possible to deposit drugs that stimulate scleral crosslinking and have a biomechanical, trophic and hemodynamic effect. Crosslinking of scleral collagen is a promising approach to the treatment of myopia.

About the Authors

E. N. Iomdina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Еlena N. Iomdina — Dr. of Biol. Sci., professor, principal researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics.

14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062



E. P. Tarutta
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Еlena P. Tarutta — Dr. of Med. Sci., professor, head of the department of refractive pathology, binocular vision and ophthalmoergonomics.

14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062



G. A. Markosian
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Gayane A. Markosian — Dr. of Med. Sci., leading researcher of the department of refractive pathology, binocular vision and ophthalmoergonomics.

14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062



J. I. Gavrilova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Julia I. Gavrilova — resident

14/19, Sadovaya-Chernogryazskaya st., Moscow, 105062



References

1. Wolffsohn J.S., Calossi A., Cho P., et al. Global trends in myopia management attitudes and strategies in clinical practice — 2019 update. Contact Lenses and Anterior Eye. 2020; 43 (1): 9–17. doi: 10.1016/j.clae.2019.11.002

2. Proskurina O.P., Markova E.Y., Brzheskij V.V., et al. The Prevalence of Myopia in Schoolchildren in Some Regions of Russia. Ophthalmology in Russia. 2018; 15 (3): 348–53 (in Russian). https://doi.org/10.18008/1816-5095-2018-3-348-353

3. Wildsoet C.F., Chia A., Cho P., et al. IMI — Interventions for Controlling Myopia Onset and Progression Report. Invest. Ophthalmol. Vis. Sci. 2019; 60: M106–M131. https://doi.org/ 10.1167/iovs.18-25958

4. Tarutta E.P., Proskurina O.V., Tarasova N.A., Ibatulin R.A., Kovychev A.S. Myopia predictors as a starting point for active prevention of myopia development. Russian ophthalmological journal. 2018; 11 (3): 107–12 (in Russian). https://doi.org/10.21516/2072-0076-2018-11-3-107-112

5. Zadnik K., Sinnott L.T., Cotter S.A., et al. Prediction of JuvenileOnset Myopia. JAMA Ophthalmol. 2015; 133 (6): 683–9. doi: 10.1001/jamaophthalmol.2015.0471

6. Tarutta E.P., Proskurina O.V., Tarasova N.A., Milash S.V., Markosyan G.A. Long-term results of perifocal defocus spectacle lens correction in children with progressive myopia. Vestnik oftal'mologii. 2019; 135 (5): 46–53 (in Russian). https://doi.org/10.17116/oftalma201913505146

7. Tarutta E.P., Verzhanskaya T.Yu. Stabilizing effect of orthokeratology lenses (ten-year follow-up results). Vestnik oftal'mologii. 2017; 133 (1): 49–54 (in Russian). https://doi.org/10.17116/oftalma2017133149-54

8. Aller T.A., Liu M., Wildsoet C.F. Myopia control with bifocal contact lenses: a randomized clinical trial. Optom. Vis .Sci. 2016; 93 (4): 344–52. doi: 10.1097/OPX.0000000000000808

9. Walline J., Greiner K., McVey M., Jones-Jordan L. Multifocal contact lens myopia control. Optom Vis Sci. 2013; 90 (11): 1207–14. doi: https://doi.org/10.1097/OPX.0000000000000036

10. Li S.M., Kang M.T., Wu S.S. Studies using concentric ring bifocal and peripheral add multifocal contact lenses to slow myopia progression in school-aged children: a meta-analysis. Ophthalmic Physiol. Opt. 2017; 37 (1): 51–9. https://doi.org/10.1111/opo.12332

11. Chia A., Lu Q.S., Tan D. Five-Year Clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01 % eyedrops. Ophthalmology. 2016; 123 (2): 391–9. doi: 10.1016/j.ophtha.2015.07.004

12. Vutipongsatorn K., Yokoi T., Ohno-Matsui K. Current and emerging pharmaceutical interventions for myopia. British Journal of Ophthalmology. 2019; 103: 1539–48. http://dx.doi.org/10.1136/bjophthalmol-2018-313798

13. Tarutta E.P., Iomdina E.N., Tarasova N.A., et al. Modern methods of diagnosing and complex functional treatment of progressive myopia. Prakticheskaya meditsina. 2018; 3 (114): 16–20 (in Russian).

14. Tarutta E.P., Iomdina E.N., Tarasova N.A., Markosyan G.A., Maksimova M.V. Complex approach to the prevention and treatment of progressive myopia in school children. RMZh “Klinicheskaya oftal'mologiya”. 2018; 2: 70–6 (in Russian). doi: 10.21689/2311-7729-2018-18-2-70-76

15. Pan C.W., Ramamurthy D., Saw S.M. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt. 2012; 32 (1): 3–16. doi: 10.1111/j.1475-1313.2011.00884.x

16. Vitale S., Sperduto R.D., Ferris F.L. 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch. Ophthalmol. 2009; 127: 1632–9. doi: 10.1001/archophthalmol.2009.303

17. Chan N.S., Teo K., Cheung C.M. Epidemiology and diagnosis of myopic choroidal neovascularization in Asia. Eye Contact Lens. 2016; 42 (1): 48–55. doi: 10.1097/ICL.0000000000000201

18. Foster P.J., Jiang Y. Epidemiology of myopia. Eye (Lond) 2014; 28: 202–8. doi: https://doi.org/10.1038/eye.2013.280

19. Morgan I.G., Ohno-Matsui K., Saw S.M. Myopia. Lancet 2012; 379: 1739–48. doi: 10.1016/S0140-6736(12)60272-4

20. Wong T.Y., Ferreira A., Hughes R., Carter G., Mitchell P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: an evidence-based systematic review. Am. J. Ophthalmol. 2014; 157: 9–25. doi: 10.1016/j.ajo.2013.08.010

21. Vongphanit J., Mitchell P., Wang J. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002; 109 (4): 704–11. doi: 10.1016/s0161-6420(01)01024-7

22. Cedrone C., Nucci C., Scuderi G., et al. Prevalence of blindness and low vision in an Italian population: a comparison with other European studies. Eye (Lond) 2006; 20: 661–7. doi: 10.1038/sj.eye.6701934

23. Klaver C.C., Wolfs R.C., Roger C.W., et al. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch. Ophthalmol. 1998. 116, 653-8. doi: 10.1001/archopht.116.5.653

24. Либман Е.С., Шахова Е.В. Слепота и инвалидность вследствие патологии органа зрения в России. Вестник офтальмологии. 2006; 1: 35–7. [Libman E.S., Shakhova E.V. Blindness and low vision due to eye pathology. Vestnik oftal’mologii. 2006; 1: 35–7 (in Russian)].

25. Iwase A., Araie M., Tomidokoro A., et al. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006. 113: 1354–62. doi: 10.1016/j.ophtha.2006.04.022

26. Xu L., Wang Y., Li Y., et al. Causes of blindness and visual impairment in urban and rural areas in Beijing: the Beijing Eye Study. Ophthalmology. 2006 Jul; 113 (7): 1134.e1-11. doi: 10.1016/j.ophtha.2006.01.035

27. Yamada M., Hiratsuka Y., Roberts C.B., et al. Prevalence of visual impairment in the adult Japanese population by cause and severity and future projections. Ophthalmic. Epidemiol. 2010; 17: 50–7. doi: 10.3109/09286580903450346

28. Verkicharla P.K., Ohno-Matsui K., Saw S.M. Current and predicted demographics of high myopia and an update of its associated pathological changes. Ophthalmic Physiol. Opt. 2015; 35 (5): 465–75. doi: 10.1111/opo.12238

29. Yoshida T., Hayashi K., Ohno-Matsui K., et al. Long-term pattern of progression of myopic maculopathy: a natural history study. Ophthalmology. 2010; 117 (8): 1595–611/ https://doi.org/10.1016/j.ophtha.2009.11.003

30. Moriyama M., Ohno-Matsui K., Hayashi K., et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology. 2011; 118: 1626–37. doi: 10.1016/j.ophtha.2011.01.018

31. Hsiang H.W., Ohno-Matsui K., Shimada N., et al. Clinical characteristics of posterior staphyloma in eyes with pathologic myopia. Am. J. Ophthalmol. 2008; 146: 102–10. doi: 10.1016/j.ajo.2008.03.010

32. He M., Zeng J., Liu Y., et al. Refractive error and visual impairment in urban children in southern China. Invest. Ophthalmol. Vis. Sci. 2004; 45 (3): 793–9. doi: 10.1167/iovs.03-1051

33. Wu P.C., Chen Y.J., Chen C.H., et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye. 2008; 22: 551–5. doi: 10.1038/sj.eye.6702789

34. Iomdina E.N. Biomechanical and biochemical disorders of the sclera in progressive myopia and methods of their correction. In: Avetisov S.E., Kashchenko T.P., Shamshinova A.M., eds. Visual functions and their correction in children. Moscow: Meditsina; 2005: 163–83 (in Russian).

35. Troilo D., Smith E.L. III, Nickla D.L., et al. IMI — report on experimental models of emmetropization and myopia. Invest. Ophthalmol. Vis. Sci. 2019; 60 (3): 31–88. doi: 10.1167/iovs.18-25967

36. Summers J.A. The Sclera and its role in regulation of the refractive state. In: Spaide R., Ohno-Matsui K., Yannuzzi L. (eds). Pathologic Myopia. Springer, New York, NY; 2014: 59–74. https://doi.org/10.1007/978-1-4614-8338-0_5

37. Shevelev M.M. Operation against high myopia and scleral ectasia with aid of transplantation of fascia lata on thinned sclera. Russian ophthalmological journal. 1930; 11: 107–10 (in Russian).

38. Thompson F.B. Scleral reinforcement for high myopia. Ophthalmic Surg. 1985; 16 (2): 90–4.

39. Momose A. Surgical treatment of myopia with special references to posterior scleral support operation and radial keratotomy. Indian J. Ophthalmol. 1983; 31: 759–67.

40. Tarutta E.P., Iomdina E.N., Maksimova M.V., Shamkhalova E.Sh., Andreeva L.D. Sclera fortification in children at a high risk of progressive myopia. Vestnik oftal'mologii. 1992; 108(2): 14–7 (in Russian).

41. Kagermazova N.Kh., Zakharov V.D. Prevention of progression of myopia using a method of scleroplasty. Oftal'mologicheskiy zhurnal. 1975; 7: 485–8 (in Russian).

42. Bushueva N.N. Remote results of different methods of sclera reinforcement operations in children and adolescents with progressive myopia. Oftal'mologicheskiy zhurnal. 1989; 4: 194–8 (in Russian).

43. Curtin B.J., Whitmore W.G. Long-term results of scleral reinforcement surgery. Am. J. Ophthalmol. 1987; 103 (4): 544–8. doi: 10.1016/s0002-9394(14)74278-3

44. Thompson F.B. Scleral reinforcement in myopia surgery. New York: Macmillan; 1990: 267–97.

45. Whitwell J. Scleral reinforcement in degenerative myopia. Trans. Ophthalmol. Soc. U.K. 1971. 91: 679–86.

46. Karabatsas C.H., Waldock A., Potts M.J. Cilioretinal artery occlusion following scleral reinforcement surgery. Acta Ophthalmol. Scand. 1997; 75 (3): 316–8. doi: 10.1111/j.1600-0420.1997.tb00784.x

47. Tarutta E.P. Sclera reinforcement treatment and prevention of complication of progressive myopia. In: Avetisov S.E., Kashchenko T.P., Shamshinova A.M., eds. Visual functions and their correction in children. Moscow: Meditsina; 2005: 191–202 (in Russian).

48. Tarutta E.P. Potentialities of preventing progressive and complicated myopia in the light of present-day knowledge of its pathogenesis. Vestnik oftal’mologii. 2006; 122 (1): 43–7 (in Russian).

49. Tarutta E.P., Iomdina E.N., Akhmedzhanova E.V. Progressing myopia in children: does it need treatment or not? Vestnik oftal’mologii. 2005; 121 (2): 5–8 (in Russian).

50. Iomdina E.N., Tarutta E.P., Markosyan G.A., et al. New technologies of sclera-strengthening treatment of progressive myopia. Rossiyskaya pediatricheskaya oftal’mologiya. 2008; 1: 28–30 (in Russian).

51. Chassine T., Villain M., Hamel C.P., Daien V. How can we prevent myopia progression? Eur. J. Ophthalmol. Jul–Aug 2015; 25 (4): 280–5. doi: 10.5301/ejo.5000571

52. Mirzajants M.G., Pristavko E.F., Pivovarov N.N. On the mechanisms of therapeutic action of sclera reinforcement surgery. Reconstructive ophthalmosurgery. Moscow; 1979: 136–8 (in Russian).

53. Krasyuk E.Yu., Noskova O.G. Analysis of efficiency of scleroplasty among patients of children department of regional state budget institute of public health “Tambov ophthalmologic hospital”. Vestnik Tambovskogo universiteta. 2015; 20 (4): 791–4 (in Russian). doi: 10.20310/1810-0198

54. Muldashev E.R. Alloplant technology as the innovational model of regenerative surgery. Prakticheskaya medicina 2019; 17 (1): 12–6 (in Russian). https://regsurgery.ru/2019/PM2019.pdf

55. Anisimova S.Yu., Anisimov S.I., Drozdova G.A., Larionov E.V., Ozornina O.S. Pathophysiological features of the use of material at the base of xenocollagen for the surgical treatment of progressing myopia. Rossiyskaya pediatricheskaya oftal'mologiya. 2009; (3): 35–8 (in Russian).

56. Pashtaev N.P., Grigorieva I.N. Preliminary results of modified cryogenic scleroplasty. Saratovskiy nauchnomeditsinskiy zhurnal. 2019; 15 (2): 515–7 (in Russian).

57. Egorov V.V., Li V.V., Smolyakova G.P., Kashura O.I. Clinical substantiation of new tactical approach scleral reinforcement surgery in children with progressive myopia. Zdravookhranenie Dal'nego Vostoka. 2018; 77 (3): 38–41 (in Russian).

58. Trufanova L.P., Balalin S.V. Analysis of the effectiveness of scleroplastic operations in children with progressive myopia with long-term follow-up. New possibilities of drug treatment of progressive myopia. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2018; 68 (4): 51–6 (in Russian). doi: 10.19163/1994-9480-2018-4(68)-51-56

59. Ji X., Wang J., Zhang J., et al. The effect of posterior scleral reinforcement for high myopia macular splitting. Journal of international medical research. 2011; 39 (2): 662]6. doi: 10.1177/147323001103900236

60. Snyder A.A., Thompson F.B. A simplified technique for surgical treatment of degenerative myopia. Am. J. Ophthalmol. 1972; 74 (2): 273–7. 10.1016/0002-9394(72)90544-2

61. Chen M., Dai J., Chu R., Qian Y. The efficacy and safety of modified SnyderThompson posterior scleral reinforcement in extensive high myopia of Chinese children. Graefe’s archive for clinical and experimental ophthalmology. 2013; 251: 2633–8. https://doi.org/10.1007/s00417-013-2429-x

62. Shen Z.M., Zhang Z.Y., Zhang L.Y., Li Z.G., Chu R.Y. Posterior scleral reinforcement combined with patching therapy for pre-school children with unilateral high myopia. Graefe’s archive for clinical and experimental ophthalmology. 2015; 253: 1391–5. https://doi.org/10.1007/s00417-015-2963-9

63. Miao Z., Li L., Xiaoli M., et al. Modified posterior scleral reinforcement as a treatment for high myopia in children and Its therapeutic effect. BioMed Research International. 2019; 2019: 1–7. https://doi.org/10.1155/2019/5185780

64. Xu Y., Liu H., Niu T., et al. Long-term observation of curative effects of posterior scleral reinforcement surgery in patients with juvenile progressive myopia. Zhonghua Yan Ke Za Zhi. 2000; 36: 455–8.

65. Markosyan G.A., Tarutta E.P., Iomdina E.N., et al. The clinico-functional and biomechanical aspects of pathogenesis, diagnostics, and treatment of congenital myopia: the review of the literature and the analysis of the native data. Rossiyskaya pediatricheskaya oftal’mologiya. 2016; 11 (3): 149–57 (in Russian). doi: 10.18821/1993-1859-2016-11-3-149-157

66. Zhu S.Q., Wang Q.M., Xue A.Q., et al. Posterior sclera reinforcement and phakic intraocular lens implantation for highly myopic amblyopia in children: a 3-year follow-up. Eye. 2014; 28: 1310–4. doi: https://doi.org/10.1038/eye.2014.200

67. Xue A., Bao F., Zheng L., et al. Posterior scleral reinforcement on progressive high myopic young patients. Optometry and vision science. 2014; 91 (4): 412–8. doi: 10.1097/OPX.0000000000000201

68. Li X.J., Yang X.P., Li Q.M., et al. Posterior scleral reinforcement for the treatment of pathological myopia. International journal of ophthalmology. 2016; 9 (4): 580–4. doi:10.18240/ijo.2016.04.18

69. Cheng Peng, Jun Xu, Xiangying Ding, et al. Effects of posterior scleral reinforcement in pathological myopia: A 3-year follow-up study. Graefes Arch. Clin. Exp. Ophthalmol. 2019 Mar; 257 (3): 607–17. doi: 10.1007/s00417-018-04212-y

70. Ward В., Tarutta Е.P., Mayer M.J. The efficacy and safety of posterior pole buckles in the control of progressive high myopia. Eye. 2009; 23: 2169–74. doi.org/10.1038/eye.2008.433

71. Gerinec A., Slezakova G. Posterior scleroplasty in children with severe myopia. Bratisl. Lek. Lisky. 2001; 102 (2): 73–8.

72. Cheglakov Yu.A., Ioshin I.E., Cheglakov V.Yu., Moiseyenko G.L. Long-term results of xenoscleroplasty of the posterior pole pf the eyeball in the treatment of patients with progressive myopia. Vestnik oftal’mologii. 2005; 121 (6): 18–21 (in Russian).

73. Tarutta E.P., Iomdina E.N., Kruzhkova G.V., Markossian G.A. Long-term results of sclera reconstructive surgery of progressive myopia. Russian ophthalmological journal. 2011; 4 (1): 71–5 (in Russian).

74. Tarutta E.P., Iomdina E.N., Viadro E.V. Sclera reinforcement treatment and prevention of complications of progressive myopia in children. Points de Vue. 2010; 63: 29–33.

75. Huang W., Duan A., Qi Y. Posterior scleral reinforcement to prevent progression of high myopia. Asia Pac. J. Ophthalmol. (Phila). 2019 Sep–Oct; 8 (5): 366–70. doi: 10.1097/APO.0000000000000257

76. Chen C.-A., Lin P.-Y., Wu P.-C. Treatment effect of posterior scleral reinforcement on controlling myopia progression: A systematic review and meta-analysis. PLoS ONE. 2020; 15 (5): e0233564. https://doi.org/10.1371/journal. pone.0233564

77. Tarutta E.P., Andreyeva L.D. A morphological study of the transplants after scleroplasty in progressive myopia. Exp. Eye Res. 1998; 67: 68.

78. Bushueva N.N. The explant for supporting the sclera in surgical treatment of progressive myopia. Oftal'mologicheskiy zhurnal. 1992; 2: 70–7 (in Russian).

79. Roh M., Grace L.N., Miller J.B. Complications associated with MIRAgel for treatment of retinal detachment. Semin. Ophthalmol. 2018; 33 (1): 89–94. doi: 10.1080/08820538.2017.1353822

80. Papakostas T.D., Vavvas D. Postoperative complications of scleral buckling. Semin. Ophthalmol. 2018;33(1):70-4. doi: 10.1080/08820538.2017.1353816

81. Iomdina E.N., Tarutta E.P., Andreeva L.D., et al. An experimental validation of sclera strengthening treatment of progressive myopia with a biologically active synthetic transplant. Refraktsionnaya khirurgiya i oftal'mologiya. 2005; 4: 19–23 (in Russian).

82. Tarutta E.P., Markosyan G.A., Ivashchenko Zh.N. Clinical and functional parameters of myopic eyes after scleroplasty with a biologically active graft. Refraktsionnaya khirurgiya i oftal'mologiya. 2006; 6 (3): 30–4 (in Russian).

83. Tarutta E.P., Iomdina E.N., Kiseleva O.A., et al. A universal synthetic material for ocular surgery. Russian Ophthalmological Journal. 2010; 3 (4): 71–5 (in Russian).

84. Lazarenko V.I., Osipova O.V., Bolshakov I.N. Collagen-chitosan complex in the treatment of degenerative myopia. Krasnoyarsk, 2014 (in Russian)].

85. obzina N.V., Bolshakov I.N., Lazarenko V.I. Properties of chitosan and its using in ophthalmology. Sibirskoe meditsinskoe obozrenie. 2015; 5: 5–13 (in Russian). doi: 10.20333/25000136-2015-5-5-13

86. Iomdina E.N., Tarutta E.P., Markosyan G.A., et al. Transpalpebral rheoophthalmography as a method for evaluating the effectiveness of sclera-strengthening and trophic treatment of progressivemyopia. Ophthalmology in Russia. 2018; 15 (4): 439–46 (in Russian). doi: https://doi.org/10.18008/1816-5095-2018-4-439-446

87. Tarutta E.P., Markosian G.A., Sianosyan A.A., Milash S.V. Choroidal thickness in varied types of refraction and its changes after sclera strengthening surgeries. Russian ophthalmological journal. 2017; 10 (4): 48–53 (in Russian). https://doi.org/10.21516/2072-0076-2017-10-4-48-53

88. Xue A., Zheng L., Tan G., et al. Genipin-crosslinked donor sclera for posterior scleral contraction/reinforcement to high progressive myopia. Invest. Ophthalmol. Vis. Sci. 2018; 59: 3564–73. doi: 10.1167/iovs.17-23707

89. Wollensak G., Iomdina E., Dittert D.D., Salamatina O., Stoltenburg G. Crosslinking of scleral collagen in the rabbit using riboflavin and UVA. Acta Ophthalmol. Scand. 2005; 83: 477–82. doi: 10.1111/j.1600-0420.2005.00447.x

90. Backhouse S., Gentle A. Scleral remodeling in myopia and its manipulation: a review of recent advances in scleral strengthening and myopia. Annals of eye science. 2018 Jan; 3 (1): 1–15. doi: 10.21037/aes.2018.01.04

91. Liu S., Li S., Wang B., et al. Scleral cross-linking using riboflavin UVA irradiation for the prevention of myopia progression in a guinea pig model: blocked axial extension and altered scleral microstructure. PLoS One. 2016; 11: e0165792 https://doi.org/10.1371/journal.pone.0165792

92. Li Y., Liu C., Sun M., et al. Ocular safety evaluation of blue light scleral crosslinking in vivo in rhesus macaques. Graefes Arch. Clin. Exp. Ophthalmol. 2019; 257: 1435–42. https://doi.org/10.1007/s00417-019-04346-7

93. Wollensak G., Iomdina E. Long-term biomechanical properties of rabbit sclera after collagen crosslinking using riboflavin and ultraviolet A (UVA). Acta Ophthalmol. 2009; 87 (2): 193–8. doi: 10.1111/j.1755-3768.2008.01229.x

94. Iomdina Е.N., Tarutta Е.P., Semchishen V.А., et al. Experimental realization of minimally invasive techniques of scleral collagen cross-linking. Vestnik oftal’mologii. 2016; 6: 49–57 (in Russian). doi: 10.17116/engoftalma20161326-4

95. Wang M., Zhang F., Liu K., Zhao X. Safety evaluation of rabbit eyes on scleral collagen cross-linking by riboflavin and ultraviolet A. Clin. Experiment. Ophthalmol. 2015; 43: 156–63. doi: 10.1111/ceo.12392

96. Dotan A., Kremer I., Livnat T., et al. Scleral cross-linking using riboflavin and ultraviolet-a radiation for prevention of progressive myopia in a rabbit model. Exp Eye Res. 2014; 127: 190–5. doi: 10.1016/j.exer.2014.07.019

97. Wollensak G., Iomdina E. Long-term biomechanical properties after collagen crosslinking of sclera using glyceraldehyde. Acta Ophthalmol. 2008; 86 (8): 887–93. doi: 10.1111/j.1755-3768.2007.01156.x

98. Kim T.G., Kim W., Choi S., Jin K.H. Effects of scleral collagen crosslinking with different carbohydrate on chemical bond and ultrastructure of rabbit sclera: Future treatment for myopia progression. PLoS ONE. 2019; 14 (5): e0216425. https://doi.org/10.1371/journal.pone.0216425


Review

For citations:


Iomdina E.N., Tarutta E.P., Markosian G.A., Gavrilova J.I. Current assessment results of the efficacy and safety of scleroplasty in progressive myopia. Russian Ophthalmological Journal. 2021;14(1):96-103. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-1-96-103

Views: 1344


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)