Ophthalmic examination in the debut and during progression of neurodegenerative diseases
https://doi.org/10.21516/2072-0076-2021-14-1-104-110
Abstract
Neurodegenerative diseases (NDD) are a group of nosological forms, caused by excessive formation of protein molecules and their aggregates and leading to the death of brain cells. Classical pathophysiological mechanisms are associated with the accumulation of extracellular amyloid b -protein (A b) in Alzheimer's disease (AD) and a -synuclein protein in Parkinson's disease (PD), which are markers of neurodegenerative process. Signs of functional disorders in NDD include decreasing visual acuity, lower contrast light sensitivity with the most significant changes at the highest spatial frequencies (18 and 12 cycles per degree), and reduced color vision. These disorders correlate with the severity of cognitive impairment and duration of the disease. Changes in the indicators of psychophysical tests are accompanied by lower central retinal thickness (CRT), which is a consequence of inner layers degeneration. NDD progression is characterized by the stability of psychophysical tests, significant thinning of the peripapillary retinal nerve fiber layer (RNFL) and CRT thickening, which correlates with cognitive disfunction. A b and a -synuclein deposits in artery walls cause lumen narrowing and occlusion of blood vessels, reduced optic nerve disk perfusion density, superficial and deep capillary plexus depletion, expansion of the avascular foveolar zone. Microcirculatory disorders lead to retinal changes, which were proven to correlate negatively with the thickness of inner retinal layers and duration of the disease. An ever-growing need in the identification of specific and sensitive biomarkers at the preclinical stage of NDDs, differentiation of their causes, precise subtype classification, and assessment of progression risk is an evidence of the relevance of studying and identifying functional and structural changes in retinal neurons and axons. Non-invasive and informative methods of multimodal imaging appear to be valuable for NDD diagnosis and monitoring.
About the Authors
A. Zh. FursovaRussian Federation
Anzhella Zh. Fursova — Dr. of Med. Sci., head of ophthalmology dept.
52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko st., Novosibirsk, 630087
Yu. A. Gamza
Russian Federation
Yulia A. Gamza — M.D., assistant professor of ophthalmology dept.
52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko st., Novosibirsk, 630087
M. Yu. Zubkova
Russian Federation
Margarita Yu. Zubkova — M.D., assistant professor of ophthalmology Dept.
52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko st., Novosibirsk, 630087
A. S. Derbeneva
Russian Federation
Anna S. Derbeneva — M.D., assistant professor of ophthalmology dept.
52, Krasny Prospect, Novosibirsk, 630091; 130, Nemirovich-Danchenko st., Novosibirsk, 630087
O. B. Doronina
Russian Federation
Olga B. Doronina — Cand. of Med. Sci., associate professor of neurology Dept.
52, Krasny Prospect, Novosibirsk, 630091
K. S. Doronina
Russian Federation
Ksenia S. Doronina — researcher of neurology dept.
52, Krasny Prospect, Novosibirsk, 630091
N. V. Bulatova
Russian Federation
Natalia V. Bulatova — laboratory assistant of neurology dept.
52, Krasny Prospect, Novosibirsk, 630091
A. S. Belgibaeva
Russian Federation
Anna S. Belgibaeva — laboratory assistant of neurology dept.
52, Krasny Prospect, Novosibirsk, 630091
References
1. Ferri C.P., Prince M., Brayne C., et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005; 366 (9503): 2112–7. doi: 10.1016/S0140-6736(05)67889-0
2. Prusiner S.B. Shattuck lecture – neurodegenerative disease and prions. N. Engl. J. Med. 2001; 344 (20): 1516-26. doi: 10.1056/NEJM200105173442006
3. Lees A.J. Unresolved issues relating to the shaking palsy on the celebration of James Parkinson's 250th birthday. Mov. Disord. 2007; 22 Suppl 17: S327–334. doi: 10.1002/mds.21684
4. Bodis-Wollner I., Kozlowski P.B., Glazman S., Miri S. Alpha-synuclein in the inner retina in Parkinson disease. Ann. Neurol. 2014; 75 (6): 964–66. doi: 10.1002/ana.24182
5. Jack C.R. Jr., Albert M.S., Knopman D.S., et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011; 7 (3): 257–62. doi: 10.1016/j.jalz.2011.03.004
6. Avila J., Pallas N., Bolos M., Sayas C.L., Hernandez F. Intracellular and extracellular microtubule associated protein tau as a therapeutic target in Alzheimer disease and other tauopathies. Expert Opin. Ther. Targets. 2016; 20 (6): 653–61. doi: 10.1517/14728222.2016.1131269
7. Polo V., Garcia-Martin E., Bambo M.P., et al. Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer's disease. Eye (Lond). 2014; 28 (6): 680–90. doi: 10.1038/eye.2014.51
8. Salobrar-Garcia E., de Hoz R., Ramírez A.I., et al. Changes in visual function and retinal structure in the progression of Alzheimer's disease. PloS one. 2019; 14 (8): e0220535. doi: 10.1371/journal.pone.0220535
9. Leuba G., Saini K., Zimmermann V., Giannakopoulos P., Bouras C. Mild amyloid pathology in the primary visual system of nonagenarians and centenarians. Dement.Geriatr. Cogn. Disord. Karger Publishers. 2001; 12 (2): 146–52. doi: 10.1159/000051249
10. Webster M.A. Evolving concepts of sensory adaptation. F1000 Biol. Rep. 2012; 4: 21. doi: 10.3410/B4-21
11. Polo V., Satue M., Obis J., et al. Retinal and choroidal changes in patients with Parkinson's disease detected by Swept-Source Optical Coherence Tomography.Curr. Eye Res. 2018; 43 (1): 109–15. doi: 10.1080/02713683.2017.1370116
12. Risacher S.L., Wudunn D., Pepin S.M., et al. Visual contrast sensitivity in Alzheimer’s disease, mild cognitive impairment, and older adults with cognitive complaints. Neurobiol. Aging. 2013; 34 (4): 1133–44. doi: 10.1016/j.neurobiolaging.2012.08.007
13. Salamone G., Di Lorenzo C., Mosti S., et al. Color discrimination performance in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. Karger Publishers. 2009; 27 (6): 501–7. doi: 10.1159/000218366.
14. Savaskan E., Wirz-Justice A., Olivieri G., et al. Distribution of melatonin MT1 receptor immunoreactivity in human retina. J. Histochem. Cytochem. 2002; 50 (4): 519–26. doi: 10.1177/002215540205000408
15. Hart N.J., Koronyo Y., Black K.L., Koronyo-Hamaoui M. Ocular indicators of Alzheimer’s: exploring disease in the retina. Acta Neuropathol. Springer Berlin Heidelberg; 2016; 132 (6): 767–87. doi: 10.1007/s00401-016-1613-6
16. Rami L., Serradell M., Bosch B., Villar A., Molinuevo J.L. Perception digital test (PDT) for the assessment of incipient visual disorder in initial Alzheimer’s0 00disease. Neurologia. 2007; 22 (6): 342–7.
17. Bodis-Wollner I., Diamond S. The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 1976; 99 (4): 695–710. doi: 10.1093/brain/99.4.695
18. Synder P., Johnson P., Lim Y., et al. Non-vascular retinal imaging markers of Preclinical Alzheimer’s disease. Alzheimers Dement. 2016; 4: 169–17. doi: 10.1038/s41598-020-73486-2
19. Moreno-Ramos T., Benito-León J., Villarejo A., Bermejo-Pareja F. Retinal nerve fiber layer thinning in dementia associated with Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease. J. Alzheimers Dis. 2013; 34 (3): 659–64. doi: 10.3233/JAD-121975
20. Csincsik L., Shakespeare T., Quinn N., et al. Retinal imaging in early and late Alzheimer’s disease. Invest. Ophthalmol. Vis. Sci. 2016; 57: 337. doi: 10.13140/RG.2.2.35038.54080
21. Li S., Hong S., Sheparardson N., et al. Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron. 2009; 62 (6): 788–801. doi: 10.1016/j.neuron.2009.05.012
22. Spund B., Ding Y., Liu T., et al. Remodeling of the fovea in Parkinson disease. J. Neural Transm. 2013; 120 (5): 745–53. doi: 10.1007/s00702-012-0909-5
23. Garcia-Martin E.S., Rojas B., Ramirez A.I., et al. Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology. 2014; 121 (5): 1149–51. doi: 10.1016/j.ophtha.2013.12.023
24. Harnois C., Di Paolo T. Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci. 1990; 31 (11): 2473–5.
25. Firsov M., Astakhova L. The role of dopamine in controlling retinal photoreceptor function in vertebrates. Neurosci. Behav. Physiol. 2016; 46 (2): 138–45. https://doi.org/10.1007/s11055-015-0210-9
26. Witkovsky P. Dopamine and retinal function. Doc Ophthal-mol. 2004; 108 (1): 17–40. doi: 10.1023/b:doop.0000019487.88486.0a
27. Roth N.M., Saidha S., Zimmermann H., et al. Photoreceptor layer thinning in idiopathic Parkinson’s disease. Mov. Disord. 2014; 29 (9): 1163–70. doi: 10.1002/mds.25896
28. Nir I., Harrison J.M., Haque R., et al. Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J. Neuro-sci. 2002; 22 (6): 2063–73. doi: 10.1523/JNEUROSCI.22-06-02063.2002
29. Devos D., Tir M., Maurage C.A., et al. ERG and anatomical abnormalities suggesting retinopathy in dementia with Lewy bodies. Neurology. 2005; 65 (7): 1107–10. doi: 10.1212/01.wnl.0000178896.44905.33
30. Gupta V., Gupta V.B., Chitranshi N., et al. One protein, multiple pathologies: multifaceted involvement of amyloid beta in neurodegenerative disorders of the brain and retina. Cell Mol. Life Sci. 2016; 73 (22): 4279–97. doi: 10.1007/s00018-016-2295-x
31. Mutlu U., Bonnemaijer P.W.M., Ikram M.A., et al. Retinal neurodegeneration and brain MRI markers: the Rotterdam Study. Neurobiol. Aging. 2017; 60: 183-91. doi: 10.1016/j.neurobiolaging.2017.09.003
32. Mahajan D., Votruba M. Can the retina be used to diagnose and plot the progression of Alzheimer's disease? Acta Ophthalmol. 2017; 95 (8): 768–77. doi: 10.1111/aos.13472
33. Lad E.M., Mukherjee D., Stinnett S.S., et al. Evaluation of inner retinal layers as biomarkers in mild cognitive impairment to moderate Alzheimer’s disease. PLoS One. 2018; 13 (2): e0192646. doi: 10.1371/journal.pone.0192646
34. Armstead W.M. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol. Clin. 2016; 34 (3): 465–77. doi: 10.1016/j.anclin.2016.04.002
35. Cheung C.Y.L., Ong Y.T., Ikram M.K., et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimer’s and Dementia. 2014; 10 (2): 135–42. doi: 10.1016/j.jalz.2013.06.009
36. Frost S., Kanagasingam Y., Sohrabi H., et al. Retinal vascular biomarkers for early detection and monitoring of Alzheimer’s disease. Transl. Psychiatry. 2013; 3 (2): e233. doi: 10.1038/tp.2012.150
37. Lahme L., Esser E.L., Mihailovic N., et al. Evaluation of ocular perfusion in Alzheimer’s disease using Optical Coherence Tomography Angiography. J. Alzheimer’s Dis. 2018; 66 (4): 1745–52. doi: 10.3233/JAD-180738
38. Bambo M.P., Garcia-Martin E., Otin S., et al. Visual function and retinal nerve fibre layer degeneration in patients with Alzheimer disease: correlations with severity of dementia. Acta Ophthalmol. 2015; 93 (6): e507– e508. doi: 10.1111/aos.12635
39. Zabel P., Kaluzny J.J., Wilkosc-Debczynska M., et al. Comparison of retinal microvasculature in patients with Alzheimer’s disease and primary open-angle glaucoma by optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 2019; 60 (10): 3447–55. doi: 10.1167/iovs.19-27028
40. Zhang Y.S., Zhou N., Knoll B.M., et al. Parafoveal vessel loss and correlation between peripapillary vessel density and cognitive performance in amnestic mild cognitive impairment and early Alzheimer’s Disease on optical coherence tomography angiography. PLoS ONE. 2019; 14 (4): e0214685. doi: 10.1371/journal.pone.0214685
41. Jiang H., Wei Y., Shi Y., et al. Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J. Neuro Ophthalmol. 2018; 38 (3): 292–8. doi: 10.1097/WNO.0000000000000580
42. O’Bryhim B.E., Apte R.S., Kung N., Coble D., Van Stavern G.P. Association of preclinical Alzheimer disease with Optical Coherence Tomographic Angiography findings. JAMA Ophthalmol. 2018; 136 (11): 1242–8. doi: 10.1001/jamaophthalmol.2018.3556
43. Shi C., Chen Y., Kwapong W.R., et al. Characterization by fractal dimension analysis of the retinal capillary network in Parkinson disease. Retina. 2019; 40 (8): 1483–91. doi: 10.1097/IAE.0000000000002641
Review
For citations:
Fursova A.Zh., Gamza Yu.A., Zubkova M.Yu., Derbeneva A.S., Doronina O.B., Doronina K.S., Bulatova N.V., Belgibaeva A.S. Ophthalmic examination in the debut and during progression of neurodegenerative diseases. Russian Ophthalmological Journal. 2021;14(1):104-110. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-1-104-110