Optical coherence tomography in patients with somatotropin-producing pituitary adenoma
https://doi.org/10.21516/2072-0076-2021-14-2-81-84
Abstract
Optical coherence tomography (OCT) is widely used in ophthalmological practice. The review presents the results of OCT in patients with somatotropin-producing pituitary adenoma, or somatotropinoma, which is a hormone-active tumor of the adenohypophysis, characterized by excessive production of somatotropic hormone (STH). It stimulates the secretion of type I insulin-like growth factor (IGF-I). The mechanisms of STH action (pro-angiogenic action, stimulation endothelial cell proliferation and migration, development of endothelial dysfunction and retinal edema) requires much attention to the results of examination of patients with somatotropinomas using modern diagnostic methods, such as OCT.
About the Authors
N. A. GavrilovaRussian Federation
Natalia A. Gavrilova— Dr. of Med. Sci., professor, head of chair of eye diseases
20, Bldg. 1, Delegatskaya St., Moscow, 127473
N. S. Gadzhieva
Russian Federation
Nuriа S. Gadzhieva— Cand. of Med. Sci., assistant of professor of chair of eye diseases
20, Bldg. 1, Delegatskaya St., Moscow, 127473
A. V. Kuz’mina
Russian Federation
Anastasiya V. Kuz’mina — PhD student, chair of eye diseases
20, Bldg. 1, Delegatskaya St., Moscow, 127473
References
1. Dudina M.A., Dogadin S.A., Lobyntseva L.A., Gayduk K.K., Borovik O.V.Concentration of somatotropin and insulin-like growth factor-1 in blood, relation with pituitary somatotropinoma size in patients with acromegaly. Siberian medical review. 2012; 73 (1): 15–8 (in Russian)].
2. Tjörnstrand A., Gunnarsson K., Evert M., et al.The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur. J. Endocrinol. 2014; 171 (4): 519–26. doi: 10.1530/eje-14-0144
3. Mehta G.U., Lonser R.R. Management of hormone-secreting pituitary adenomas. Neuro Oncol. 2017; 19 (6): 762–73. doi:10.1093/neuonc/now130
4. Agustsson T.T., Baldvinsdottir T., Jonasson J.G., et al. The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur. J. Endocrinol. 2015; 173 (5): 655–64. doi:10.1530/eje-15-0189
5. Vorotnikova S.Yu., Pigarova E.A., Dzeranova L.K. Metabolic effects of growth hormone. Obesity and metabolism. 2012; 73 (1): 15–8 (in Russian). doi: 10.14341/2071-8713-5308
6. Sarkisov D.S. Structural bases of adaptation and compensation of impaired functions. Moscow: Meditsina; 1987 (in Russian).
7. Dekkers O.M., Biermasz N.R., Pereira A.M., Romijn J.A., Vandenbroucke J.P. Mortality in acromegaly: A metaanalysis. J. Clin. Endocrinol. Metab. 2008; 93 (1): 61–7. doi:10.1210/jc.2007-1191
8. Rajasoorya C., Holdaway I.M., Wrightson P., Scott D.J., Ibbertson H.K. Determinants of clinical outcome and survival in acromegaly. Clin. Endocrinol. (Oxf). 1994; 41 (1): 95–102. doi:10.1111/j.1365-2265.1994.tb03789.x
9. Maffei P., Dassie F., Wennberg A., Parolin M., Vettor R. The Endothelium in Acromegaly. Front Endocrinol (Lausanne). 2019; 10: 437. doi:10.3389/fendo.2019.00437
10. Wilson S.H., Davis M.I., Caballero S., Grant M.B.Modulation of retinal endothelial cell behaviour by insulin-like growth factor I and somatostatin analogues: implications for diabetic retinopathy. Growth hormone IGF Res. 2001; 11 (A): 53–9. doi:10.1016/S1096-6374(01)80009-5
11. Spoerri P.E., Caballero S., Wilson S.H., Shaw L.C., Grant M.B.Expression of IGFBP-3 by human retinal endothelial cell cultures: IGFBP-3 involvement in growth inhibition and apoptosis. Invest. Ophthalmol. Vis. Sci. 2003; 44: 365–9. doi:10.1167/iovs.02-0309
12. Messias de Lima C.F., dos Santos Reis M.D., da Silva Ramos F.W., Ayres-Martins S.,Smaniotto S.Growth hormone modulates in vitro endothelial cell migration and formation of capillary-like structures. Cell. Biol. Int. 2017; 41: 577–84. doi:10.1002/cbin.10747
13. King G.L., Goodman A.D., Buzney S., Moses A., Kahn C.R.Receptors and growth-promoting effects of insulin and insulin like growth factors on cells from bovine retinal capillaries and aorta. J. Clin. Inves. 1985; 75 (3): 1028–36. doi:10.1172/JCI111764
14. Lambooij A.C., van Wely K.H., Lindenbergh-Kortleve D.J., et al.Insulinlike growth factor-I and its receptor in neovascular age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 2003; 44: 2192–8. doi:10.1167/iovs.02-0410
15. Chu Q., Moreland R., Yew N.S., et al. Systemic Insulin-like growth factor-1 reverses hypoalgesia and improves mobility in a mouse model of diabetic peripheral neuropathy. Mol. Ther. 2008; 16: 1400–8. doi: 10.1038/mt.2008.115
16. Novikov V.E., Pozhilova E.V., Levchenkova O.S. Medical clinical perspectives of the hypoxia adaptation factor inhibitors. Reviews on Clinical Pharmacology and Drug Therapy. 2015; 3: 9–7 (in Russian)]. doi: 10.17816/RCF1339-17
17. Кац М.В. Роль ИФР-I в неоваскуляризации сетчатки. Вестник СМУ 2018; 3 (22): 74. [Kats M.V.The role of IGF-I in retinal neovascularization. Bulletin of SMU. 2018; 3 (22): 74 (in Russian)].
18. Onnis B., Rapisarda A., Melillo G. Development of HIF-1 42. Inhibitors for cancer therapy. J. Cell. Mol. Med. 2009; 13 (9A): 2780–6. doi: 10.1111 / j.1582-4934.2009.00876.x
19. Punglia R.S., Lu M., Hsu J., et al. Regulation of Vascular Endothelial Growth Factor expression by Insulin-Like Growth Factor I. Diabetes. 1997; 46 (10): 1619–26. doi:10.2337/diacare.46.10.1619
20. Spraul C.W., Kaven C., Amann J., Lang G.K., Lang G.E.Effect of Insulin-Like Growth Factors 1 and 2, and glucose on the migration and proliferation of bovine retinal pigment epithelial cells in vitro. Ophthalmic Res. 2000; 32: 244–8. doi: 10.1159/000055621
21. Füchtbauer L., Olsson D., Coopmans E., et al.Increased number of retinal vessels in acromegaly. European Journal of Endocrinology. 2020; 182 (3): 293–302. doi: 10.1530/EJE-19-0778
22. Boulton M., Gregor Z., McLeod D., et al. Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br. J. Ophthalmol. 1997; 81: 228–33. doi:10.1136/bjo.81.3.228
23. Meyer-Schwickerath R., Pfeiffer A., Blum W.F., et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J. Clin. Invest. 1993; 92: 2620–5. doi:10.1172/jci116877
24. Waldbillig R.J., Jones B.E., Schoen T.J., et al.Vitreal insulin-like growth factor binding proteins (IGFBPs) are increased in human and animal diabetics. Curr. Eye Res. 1994; 13: 539–46. doi:10.3109/02713689408999886
25. van Setten G., Brismar K., Algvere P.Elevated intraocular levels of insulin-like growth factor I in a diabetic patient with acromegaly. Orbit. 2002; 21: 161–7. doi:10.1076/orbi.21.2.161.7186
26. Danis R.P., Bingaman D.P. Insulin-like Growth Factor-1 retinal microangiopathy in the pig eye. Ophthalmology.1997; 104 (10): 1661–9. doi:10.1016/s0161-6420(97)30081-5
27. Hussain M.A., Studer K., Messmer E.P., Froesch E.R.Treatment with insulin-like growth factor I alters capillary permeability in skin and retina. Diabetes. 1995; 44: 1209–12. doi:10.2337/diabetes.44.10.1209
28. Lange M., Pagotto U., Hopfner U., et al.Endothelin expression in normal human anterior pituitaries and pituitary adenomas. The Journal of Clinical Endocrinology Metabolism. 1994; 79 (6): 1864–70. doi:10.1210/jcem.79.6.7527415
29. Stewart D.J.Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease. Annals of internal medicine. 1991; 114: 464–9. doi: 10.7326/0003-4819-114-6-464
30. Cioffi G.A., Orgul S., Onda E., Bacon D.R., Van Buskirk E.M. An in vivo model of chronic optic nerve ischemia: the dose-dependent effects of endothelin-1 on the optic nerve microvasculature. Curr. Eye Res. 1995; 14: 1147–53. doi:10.3109/02713689508995821
31. Nishimura K., Riva C.E., Harino S., et al.Effects of endothelin-1 on optic nerve head blood flow in cats. J. Ocul. Pharmacol. Ther.1996; 12: 75–83. doi:10.1089/jop.1996.12.75
32. Emdadi A., Zangwill L., Sample P.A., et al.Patterns of optic disk damage in patients with early focal visual field loss. Am. J. Ophthalmol. 1998; 126: 763–71. doi:10.1016/s0002-9394(98)00281-5
33. Cioffi G.A.Ischemic model of optic nerve injury. Trans Am. Ophthalmol. Soc. 2005; 103: 592–613. doi:10.1016/j.ajo.2006.02.013
34. Ciresi A., Amato M.C., Morreale D., et al. Cornea in acromegalic patients as a possible target of growth hormone action. J. Endocrinol. Invest. 2011; 34: 30–5. doi:10.1007/BF03347058
35. Polat S.B., Ugurlu N., Ersoy R., et al.Evaluation of central corneal and central retinal thicknesses and intraocular pressure in acromegaly patients. Pituitary. 2014; 17: 327–32. doi:10.1007/s11102-013-0505-1
36. Pekel G., Akin F., Ertürk M.S., et al.Chorio-retinal thickness measurements in patients with acromegaly. Eye (Lond). 2014; 28 (11): 1350–4. doi:10.1038/eye.2014.216
37. Zhang X., Ma J., Wang Y., et al.Elevated serum IGF-1 level enhances retinal and choroidal thickness in untreated acromegaly patients. Endocrine. 2018; 59: 634–42. doi:10.1007/s12020-017-1511-2
38. Yazgan S., Arpaci D., Celik H.U., Isik I. Evaluation of macular and peripapillary choroidal thickness, macular volume and retinal nerve fiber layer in acromegaly patients. Int. Ophthalmol. 2018; 38: 617–25. doi:10.1007/s10792-017-0500-z
39. Sen E., Tutuncu Y., Elgin U., et al. Comparing acromegalic patients to healthy controls with respect to intraocular pressure, central corneal thickness, and optic disc topography findings. Indian J. Ophthalmol. 2014; 62 (8): 841–5. doi:10.4103/0301-4738.141035
40. Cennamo G., Auriemma R.S., Cardone D., et al. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye. 2015; 29 (6): 797–802. doi: 10.1038/eye.2015.35
41. Duru N., Ersoy R., Altinkaynak H., et al. Evaluation of retinal nerve fiber layer thickness in acromegalic patients using Spectral-Domain Optical Coherence Tomography. Seminars in Ophthalmology. 2016; 31 (3): 285–90. doi:10.3109/08820538.2014.962165
42. Şahin M., Şahin A., KılınçF., et al.Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly. Int. Ophthalmol. 2017; 37: 591–8. doi: 10.1007/s10792-016-0310-8
Review
For citations:
Gavrilova N.A., Gadzhieva N.S., Kuz’mina A.V. Optical coherence tomography in patients with somatotropin-producing pituitary adenoma. Russian Ophthalmological Journal. 2021;14(2):81-84. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-2-81-84