Optical coherence tomography-angiography as a non-invasive method of pathology diagnosis of the microcirculatory bed of the optic nerve and macula
https://doi.org/10.21516/2072-0076-2021-14-2-90-95
Abstract
The review discusses the development of optical coherence tomography with the function of angiography, focusing on its advantages, features, and prospects for the diagnosis of fundus pathologies.
About the Authors
M. S. KrivosheevaRussian Federation
Maria S. Krivosheeva— Cand. of Med. Sci., ophthalmologist of the surgical department of the polyclinic
62а, Novouglichskoe shosse, Sergiev Posad, Moscow Region, 141301
E. E. Ioyleva
Russian Federation
Elena E. Ioyleva— Dr. of Med. Sci., scientific secretary, professor of chair of ophthalmology
59а, Beskudnikovsky Blvd., Moscow, 127486
20, Bldg. 1, Delegatskaya St., Moscow, 127473
References
1. Melamed S., Levkovitch-Verbin H.Laser scanning tomography and angiography of the optic nerve head for the diagnosis and follow-up of glaucoma. Curr. Opin. Ophthalmol. 1997; (2): 7–12. https://doi.org/0.1097/00055735-199704000-00003
2. Meyer C.H., Hoerauf H., Schmidt-Erfurth U., et al.Correlation of morphologic changes between optical coherence tomography and topographic angiography in a case of gyrate atrophy. Ophthalmologe. 2000; 97 (1): 41–6. https://doi.org/10.1007/s003470050009
3. Yannuzzi L.A., Ober M.D., Slakter J.S., et al. Ophthalmic fundus imaging: today and beyond. Am. J. Ophthalmol. 2004; 137 (3): 511–24. https://doi.org/10.1016/j.ajo.2003.12.035
4. Sander B., Larsen M., Thrane L., Hougaard J.L., Jørgensen T.M. Enhanced optical coherence tomography imaging by multiple scan averaging. Br. J. Ophthalmol. 2005; 89 (2): 207–12. https://doi.org/: 10.1136/bjo.2004.045989
5. Makita S., Hong Y., Yamanari M., et al. Optical coherence angiography. Opt. Express. 2006; 14 (17): 7821–40. https://doi.org/: 10.1364/oe.14.007821
6. Yasuno Y., Hong Y., Makita S., et al.In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express. 2007; 15: 6121–39. https://doi.org/: 10.1364/oe.15.006121
7. Shaimov T.B., Panova I.E., Shaimov R.B., et al. Optical coherence tomography angiography in the diagnosis of neovascular age-related macular degeneration.Vestnik oftal'mologii. 2015; 131 (5): 4–13 (in Russian)]. https://doi.org/10.17116/oftalma201513154-12
8. Lira R., Oliveira C., Marques M., Silva A., Pessoa C. Adverse reactions of fluorescein angiography: a prospective study. Arquivos Brasileiros de Ophthalmologia. 2007; 70 (4): 615–18. https://doi.org/: 10.1590/s0004-27492007000400011
9. Ioyleva E.E., Krivosheeva M.S., Andrusyakova E.P. Parameters OCT-angiography of the macular area of the retina and optic nerve in healthy young people. Rossiyskaya detskaya oftal'mologiya. 2019; 3: 38–42 (in Russian)]. https://doi.org/10.25276/2307-6658-2019-3-38-42
10. Yia Y., Tan O., Tokayer J., et al. Split – spectrum amplitude decorrelation angiography with optical coherence tomography. Opt. Express. 2012; 20 (4): 4710. https://doi.org/10.1364/OE.20.004710
11. Lumbroso B., Huang D., Yia Y., Fujimoto J.A., Rispodi M. Clinical guide to Angio-OCT. New Delhi: Jaypee Brothers Medical Publ.; 2015.
12. Sellam A., Glacet-Bernard A., Coscas F., et al. Qualitative and quantitative follow-up using optical coherence tomography angiography of retinal vein occlusion treated with anti-VEGF: Optical Coherence Tomography Angiography follow-up of retinal vein occlusion. Retina. 2017; 37 (6): 1176–184. https://doi.org/10.1097/IAE.0000000000001334
13. Budzinskaya M.V., Shelankova A.V., Mikhaylova M.A., et al. Analysis of changes in central macular thickness based on optical coherence tomography angiography findings in retinal vein occlusion. Vestnik oftal'mologii. 2016; 132 (5): 15–22 (in Russian)]. https://doi.org/10.17116/oftalma2016132515-22
14. Zhukova S.I., Zlobina A.N., Iureva T.N.,Shchuko A.A.Optical coherence tomography in assessment chorioretinal blood flow in patients with central serous chorioretinopathy. Regionarnoye krovoobrashcheniye i mikrotsirkulyatsiya. 2016; 15; 4 (60): 39–47 (in Russian)]. https://doi.org/10.24884/1682-6655-2016-15-4-39-47
15. Chibrikova Yu.A., Melnikova Yu.A. Evaluation of the effectiveness of intravitreal administration of aflibercept in the neovascular form of AMD using angio-OCT. Bulletin of Medical Internet Conferences. 2019; 9 (1): 10 (in Russian)].
16. Virsta A.M., Kamenskikh T.G., Nugaeva N.R., Kolbenev I.O.,Gileva E.V.Fluorescent angiography and optical coherence tomography with angiography of the ocular fundus in patients with “the wet” form of an age-related macular degeneration. Saratov Journal of Medical Scientific Research. 2017; 13 (2): 345–9 (in Russian)].
17. Tultseva S.N., Astakhov Y.S., Rukhovets A.G., Titarenko A.I.Diagnostic value OF oct-angiography AND regional hemodynamic assessment in patients with retinal vein occlusion. Oftal'mologicheskiye vedomosti. 2017; 10 (2): 40–8 (in Russian) ]. https://doi.org/:10.17816/OV10240-48
18. Neroev V.V., Saakyan S.V., Myakoshina E.B., Okhotsimskaya T.D., Fadeeva V.A. Role of optical coherence tomography angiography in diagnostics of early choroidal melanoma and circumscribed choroidal hemangioma. Vestnik oftal'mologii. 2018; 134 (3): 4–18 (in Russian)]. https://doi.org/10.17116/oftalma201813434
19. Szelog J.T., Bonini Filho M.A., Lally D.R., de Carlo T.E., Duker J.S. Optical Coherence Tomography Angiography for detecting choroidal neovascularization secondary to choroidal osteoma. Ophthalmic Surg. Lasers Imaging Retina. 2016; 47 (1): 69–72. https://doi.org/10.3928/23258160-20151214-10
20. Shields C.L., Say E.A., Samara W.A., et al. Optical coherence tomography angiography of the macula after plaque radiotherapy of choroidal melanoma: Comparison of irradiated versus nonirradiated eyes in 65 patients. Retina. 2016; 36 (8): 1493–505. https://doi.org/10.1097/IAE.0000000000001021
21. Say E.A., Samara W.A., Khoo C.T., et al. Parafoveal capillary density after plaque radiotherapy for choroidal melanoma: Analysis of eyes without radiation maculopathy. Retina. 2016; 36 (9): 1670–8. https://doi.org/10.1097/IAE.0000000000001085
22. Valverde-Megías A., Say E.A., Ferenczy S.R., Shields C.L.Differential macular features on optical coherence tomography angiography in eyes with choroidal nevus and melanoma. Retina. 2017; 37 (4): 731–40. https://doi.org/10.1097/IAE.0000000000001233
23. Maloca P., Gyger C., Hasler P.W. A pilot study to image the vascular network of small melanocytic choroidal tumors with speckle noise-free 1050-nm swept source optical coherence tomography (OCT choroidal angiography). Graefe’s Archive for Clinical and Experimental Ophthalmology. 2016; 254 (6): 1201–10. https://doi.org/10.1007/s00417-015-3259-9
24. Veverka K.K., Abou Chehade J.E., Iezzi R.Jr., Pulido J.S.Noninvasive grading of radiation retinopathy: The Use of Optical Coherence Tomography Angiography. Retina. 2015; 35 (11): 2400–10. https://doi.org/10.1097/IAE.0000000000000844
25. Melikhova M.V., Gatsu M.V. Dome-shaped macula phenomenon. Ophthalmology Journal. 2018; 11 (1): 71–7 (in Russian). https://doi.org/: 10.17816/OV11171-77
26. Pechauer A., Jia Y., Liu L., et al.Optical Coherence Tomography Angiography of peripapillary retinal blood flow response to hyperoxia. Invest. Ophthalmol Vis Sci. 2015; 56 (5): 3287–91 (in Russian)]. https://doi.org/ 10.1167/iovs.15-16655
27. Simonett J.M., Scarinci F., Picconi F., et al.Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. 2017; 95 (8): 751–55. https://doi.org/10.1111/aos.13404
28. Neroev V.V., Okhotsimskaya T.D., Fadeeva V.A.An account of retinal microvascular changes in diabetes acquired by OCT angiography. Russian ophthalmological journal. 2017; 10 (2): 40–5 (in Russian)]. https://doi.org/10.21516/2072-0076-2017-10-2-40-45
29. Bolukbasi S., Dogan C., Kiykim E., et al. Multimodal imaging including optical coherence tomography angiography in patients with type B Niemann–Pick disease. Int. Ophthalmol. 2019; 39 (11): 2545–52. https://doi.org/: 10.1007/s10792-019-01102-y
30. Belodurina A.D. Prospects for the diagnosis of pre-clinical Alzheimer’s disease by ophthalmologists. Vestnik Soveta molodykh uchеnykh i spetsialistov Chelyabinskoy oblasti. 2018; 2 (3): 84–7 (in Russian)].
31. O'Bryhim B.E., Apte R.S., Kung N., Coble D., Van Stavern G.P. Association of preclinical Alzheimer Disease with Optical Coherence Tomographic Angiography findings. JAMA Ophthalmol. 2018; 136 (11): 1242–48. https://doi.org/: 10.1001/jamaophthalmol.2018.3556
32. Kurysheva N.I., Trubilina A.V., Maslova E.V. Optical coherence tomography-angiography, pattern electroretinography in the early diagnosis of glaucoma. Glaucoma News. 2017; 1: 66–9 (in Russian)].
33. Philip S., Najafi A., Tantraworasin A., et al.Macula vessel density and foveal avascular zone parameters in exfoliation glaucoma compared to primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2019; 60 (4): 1244–53. https://doi.org/0.1167/iovs.18-259
34. Wang Y., Bower B.A., Izatt J.A., Tan Ou., Huang D. In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography. J. Biomed. Opt. 2007 Jul-Aug; 12 (4): 041215.doi: 10.1117 / 1.2772871
35. Samara W.A., Say E.A., Khoo C.T., et al.Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015; 35 (11): 2188–95. https://doi.org/10.1097/IAE.0000000000000847
36. Lanzillo R., Cennamo G., Criscuolo C., et al. Optical coherence tomography angiography retinal vascular network assessment in multiple sclerosis. Mult. Scler. J. 2018; 24 (13): 1706–14. https://doi.org/ 10.1177/1352458517729463-2017
37. Spain R.I., Liu L., Zhang X., et al.Optical coherence tomography angiography enhances the detection of optic nerve damage in multiple sclerosis. Br. J. Ophthalmol. 2018; 102 (4): 520–24. https://doi.org/10.1136/bjophthalmol-2017-310477
38. Krivosheeva M.S., Ioyleva E.E. Evaluation of the diagnostic and differential diagnostic value of SOCT and microperimetry methods in patients with visual disturbances due to multiple sclerosis. Russian ophthalmological journal. 2020; 13 (3): 21–9 (in Russian)]. https://doi.org/10.21516/2072-0076-2020-13-3-21-29
39. Wang X., Jia Y., Spain R., et al. Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis. Br. J. Ophthalmol. 2014; 98 (10): 1368–73. https://doi.org/0.1136/bjophthalmol-2013-304547
40. Ioyleva E.E.,Krivosheeva M.S., Andrusyakova E.P.Optical coherence tomography-angiography in the diagnosis of microcirculatory disorders. Rossiyskaya detskaya oftal'mologiya. 2019; 4: 24–8 (in Russian)]. https://doi.org/10.25276/2307-6658-2019-4-24-2
41. Pichi F., Sarraf D., Morara M., et al. Pearls and pitfalls of optical coherence tomography- angiography in the multimodal evaluation of uveitis. 2017; 7 (1): 20. https://doi.org/ 10.1186/s12348-017-0138-z
42. Shpak A.A., Korobkova M.V.Artifacts of optical coherence tomography. Russian ophthalmological journal. 2019; 12 (1): 75–80. (in Russian)]. https://doi.org/10.21516/2072-0076-2019-12-1-75-80
43. Kaidonis G., Silva R.A., Sansilo S.R., Leng T. The superficial and deep retinal capillary plexus in cases of fovea plana imaged by spectral-domain optical coherence tomography angiography. Am. J. Ophthalmol. Case Rep. 2016; 25 (6): 41–4. https://doi.org/ 10.1016/j.ajoc.2016.09.007
44. Semenova N.S., Larichev A.V., Akopyan V.S.Swept source optical coherence tomography: a technology review. Vestnik oftal'mologii. 2020; 136 (1): 111–6 (in Russian)]. https://doi.org/10.17116/oftalma2020136011111
45. Burnasheva M.A., Kulikov A.N., Maltsev D.S.Personalized analysis of foveal avascular zone with optical coherence tomography angiography. Oftal'mologicheskiye vedomosti. 2017; 10 (4): 32–40 (in Russian)]. https://doi.org/: 10.17816/OV10432-40
46. Ghasemi Falavarjani K., Tian J.J., Akil H., et al.Swept-source optical coherence tomography angiography of the optic disk in optic neuropathy. Retina. 2016; Suppl. 1: 168–77. https://doi.org/: 10.1097/IAE.0000000000001259
47. Aznabaev B.M., Muhamadeev T.R., Dibaev T.I.Optical coherent tomography + angiography of the eye. Color Atlas. Moscow; 2015 (in Russian)].
48. Anikina M.A., Matnenko T.Yu., Lebedev O.I. Optical coherence tomography — angiography: a promising method in the ophthalmological diagnostics. Prakticheskaya meditsina. 2018; 3 (114): 7–10 (in Russian)].
49. Safonenko A.Yu., Ioyleva E.E.Modern visualizationtechnologies in diagnosing the optic nerve pathologies. Prakticheskaya meditsina. 2018; 3 (114): 156–60 (in Russian)].
50. Gavrilova N.A.,Ioyleva E.E., Gadzhieva N.S., et al. Diagnostic possibilities of Optical Coherent Tomography of the retina during compression in the chiasm-sellar region. Ophthalmology in Russia. 2020; 17 (1): 5–12 (in Russian)]. https://doi.org/10.18008/1816-5095-2020-1-5-12
51. Ioyleva E., Krivosheeva M.Analysis of the localization of demyelinating plaques in patients with optic nerve atrophy due to multiple sclerosis. Neuro-Ophthalmology. 2019; 43 (1): 158–59. https://doi.org/10.1080/01658107.2019.1608780
52. Ioyleva E., Kabanova E., Krivosheeva M.Measurement of macular ganglion cellinnerplexiform layer with spectral-domain optical coherence tomography in patients with optic nerve head drusen and papilledema. Acta Ophthalmologica. 2018; 96 (261): 55.
Review
For citations:
Krivosheeva M.S., Ioyleva E.E. Optical coherence tomography-angiography as a non-invasive method of pathology diagnosis of the microcirculatory bed of the optic nerve and macula. Russian Ophthalmological Journal. 2021;14(2):90-95. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-2-90-95