Preview

Российский офтальмологический журнал

Расширенный поиск

Прогностические факторы функциональных результатов хирургии идиопатических (первичных) эпимакулярных мембран: морфология наружных и внутренних слоев макулы. Часть 3

https://doi.org/10.21516/2072-0076-2021-14-2-103-109

Полный текст:

Аннотация

В третьей части обзора (первую часть см. РОЖ 2020; 13 (2): 99–104, вторую часть см. РОЖ 2020; 13 (4): 105–110) рассматривается структура наружных и внутренних слоев макулы, выявляемая при оптической когерентной томографии в норме, их патоморфология при эпимакулярных мембранах (ЭММ) и ее влияние на состояние зрительных функций при ЭММ.

Об авторах

С. Г. Торопыгин
ФГБОУ ВО «Тверской ГМУ» Минздрава России
Россия

Сергей Григорьевич Торопыгин — д-р мед. наук, доцент, заведующий кафедрой офтальмологии

ул. Советская, д. 4, Тверь, 170100



С. В. Назарова
ФГБОУ ВО «Тверской ГМУ» Минздрава России
Россия

Станислава Вячеславна Назарова— аспирант кафедры офтальмологии

ул. Советская, д. 4, Тверь, 170100



Х. Даварах
ФГБОУ ВО «Тверской ГМУ» Минздрава России
Россия

Хаиян Даварах — врач-офтальмолог

ул. Советская, д. 4, Тверь, 170100



А. Н. Маслов
ФГБОУ ВО «Тверской ГМУ» Минздрава России
Россия

Александр Николаевич Маслов— ассистент кафедры физики, математики и медицинской информатики

ул. Советская, д. 4, Тверь, 170100



Список литературы

1. Kitaya N., Hikichi T., Kagokawa H., et al. Irregularity of photoreceptor layer after successful macular hole surgery prevents visual acuity improvement. Am. J. Ophthalmol. 2004; 138 (2): 308–10. https://doi.org/10.1016/j.ajo.2004.03.004

2. Villate N., Lee J.E., Venkatraman A., et al.Photoreceptor layer features in eyes with closed macular holes: optical coherence tomography findings and correlation with visual outcomes. Am. J. Ophthalmol. 2005; 139 (2): 280–9. https://doi.org/10.1016/j.ajo.2004.09.029

3. Лумбросо Б., Рисполи М. ОКТ (сетчатка, сосудистая оболочка, глаукома). Пер. с английского. Москва: БИНОМ; 2014.

4. Srinivasan V.J., Monson B.K., Wojtkowski M., et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2008; 49 (4): 1571–9. doi: 10.1167/iovs.07-0838

5. Fiho C.A., Yehoshua Z., Gregori G. Optical coherence tomography. Los Angeles: Retina; 2013: 82–110.

6. Mitamura Y., Mitamura-Aizawa S., Katome T., et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J. Ophthalmol. 2013: 518170. doi: 10.1155/2013/518170

7. Gabriele M.L., Wollstein G., Ishikawa H., et al. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 2011; 52 (5): 2425–36. https://doi.org/10.1167/iovs.10-6312

8. Gloesmann M., Hermann B., Schubert C., et al.Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2003; 44 (4): 1696–703. https://doi.org/10.1167/iovs.02-0654

9. Spaide R. F., Curcio C. A.Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011; 31 (8): 1609–19. https://doi.org/10.1097/IAE.0b013e3182247535

10. Лумбросо Б., Рисполи М. ОКТ сетчатки. Метод анализа и интерпретации. Москва: Апрель; 2012.

11. Yamamoto S., Arai M., et al. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008; 28 (3): 453–8. https://doi.org/10.1097/IAE.0b013e3181571398

12. Staurenghi G., Sadda S., Chakravarthy U., et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The IN OCT consensus. Ophthalmology 2014 Aug; 121 (8): 1572–8. doi: 10.1016/j.ophtha.2014.02.023

13. Bunt-Milam A.H., Saari J.C., Klock I.B., Garwin G.G. Zonulae adherents pore size in the external limiting membrane of the rabbit retina. Invest. Ophthalmol. Vis. Sci. 1985; 26 (10): 1377–80.

14. Omri S., Omri B., Savoldelli M., et al.The outer limiting membrane (OLM) revisited: clinical implications. Clinical Ophthalmology. 2010; 4: 183–95. https://doi.org/10.2147/opth.s5901

15. Ko T.H., Fujimoto J.G., Duker J.S., et al. Comparison of ultrahigh- and standard resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology. 2004; 111 (11): 2033–43. https://doi.org/10.1016/j.ophtha.2004.05.021

16. Costa R.A., Calucci D., Skaf M., et al.Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest. Ophthalmol. Vis. Sci. 2004; 45 (7): 2399–406. https://doi.org/10.1167/iovs.04-0155

17. Drexler W., Sattmann H., Herman B., et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch. Ophthalmol. 2003; 121 (5): 695–706. https://doi.org/10.1001/archopht.121.5.695

18. Cho K.H., Park S.J., Woo S.J., Park K.H. Correlation between inner-retinal changes and outer-retinal damage in patients with idiopathic epiretinal membrane. Retina. 2018; 38 (12): 2327–35. doi: 10.1097/IAE.0000000000001875

19. Rii T., Itoh Y., Inoue M., Hirakata A. Foveal cone outer segment tips line and disruption artifacts in spectral-domain optical coherence tomographic images of normal eyes. Am. J. Ophthalmol. 2012; 153 (3): 524–29. https://doi.org/10.1016/j.ajo.2011.08.021

20. Mayer W.J., Vogel M., Neubauer A., et al. Pars plana vitrectomy and internal limiting membrane peeling in epimacular membranes: correlation of function and morphology across the macula. Ophthalmologica. 2013; 230: 9–17. doi.org/10.1159/000350233

21. Mitamura Y., Hirano K., Baba T., Yamamoto S. Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images afterepiretinal membrane surgery. Br. J. Ophthalmol. 2009; 93 (2): 171–5. doi: 10.1136/bjo.2008.146381

22. Shimozono M., Oishi A., Hata M., et al. The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am. J. Ophthalmol. 2012; 153 (4): 698–704. doi.org/10.1016/j.ajo.2011.09.011

23. Suh M.H., Seo J.M., Park K.H., Yu H.G. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am. J. Ophthalmol. 2009; 147 (3): 473–80. doi.org/10.1016/j.ajo.2008.09.020

24. Hangai M., Ojima Y., Yoshida A., et al.Improved visualization of foveal pathologies using fourier-domain optical coherence tomography. Nippon Ganka Gakkai Zasshi. 2007; 111 (7): 509–17.

25. Ota M., Tsujikawa A., Murakami T., et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br. J. Ophthalmol. 2007; 91 (12): 1644–49. https://dx.doi.org/10.1136%2Fbjo.2007.118497

26. Oishi A., Hata M., Shimozono M., et al. The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am. J. Ophthalmol. 2010; 150 (1): 27–32. https://doi.org/10.1016/j.ajo.2010.02.012

27. Shimozono M., Oishi A., Hata M., Kurimoto Y.Restoration of the photoreceptor outer segment and visual outcomes after macular hole closure: spectral-domain optical coherence tomography analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (10): 1469–76. https://doi.org/10.1007/s00417-011-1681-1

28. Wakabayashi T., Fujiwara M., Sakaguchi H., et al. Foveal microstructure and visual acuity in surgically closed macular holes: spectral-domain optical coherence tomographic analysis. Ophthalmology. 2010; 117 (9): 1815–24. https://doi.org/10.1016/j.ophtha.2010.01.017

29. Sakai T., Calderone J.B., Lewis G.P., et al.Cone photoreceptor recovery after experimental detachment and reattachment: An immunocytochemical, morphological, and electrophysiological study. Invest. Ophthalmol. Vis. Sci. 2003; 44 (1): 416–25. https://doi.org/10.1167/iovs.02-0633

30. Bottoni F., De Angelis S., Luccarelli S., et al. The dynamic healing process of idiopathic macular holes after surgical repair: A spectral-domain optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 2011; 52 (7): 4439–46. https://doi.org/10.1167/iovs.10-6732

31. Ooka E., Mitamura Y., Baba T., et al.Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am. J. Ophthalmol. 2011; 152 (2): 283–90. e1. https://doi.org/10.1016/j.ajo.2011.02.001

32. Ahn S.J., Ahn J., Woo S.J., Park K.H.Photoreceptor change and visual outcome after idiopathic epiretinal membrane removal with or without additional internal limiting membrane peeling. Retina. 2014; 34 (1): 172–181. doi: 10.1097/IAE.0b013e318295f798

33. Cho K.H., Park S.J., Cho J.H., et al.Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane. Am. J. Ophthalmol. 2016; 168: 139–49. doi.org/10.1016/j.ajo.2016.05.011

34. Brito P.N., Gomes N.L., Vieira M.P., et al.Possible role for fundus autofluorescence as a predictive factor for visual acuity recovery after epiretinal membrane surgery. Retina. 2014; 34 (2): 273–80. https://doi.org/10.1097/IAE.0b013e3182999a02

35. Inoue M., Morita S., Watanabe Y., et al.Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am. J. Ophthalmol. 2010; 150 (6): 834–39. doi: 10.1016/j.ajo.2010.06.006

36. Itoh Y., Inoue M., Rii T., et al. Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery. Invest. Ophthalmol. Vis. Sci. 2013; 54 (12): 7302–08. doi:10.1167/iovs.13-12702

37. Govetto A., Lalane R.A., Sarraf D., et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am. J. Ophthalmol. 2017; 175: 99–113. https://doi.org/10.1016/j.ajo.2016.12.006

38. Govetto A., Virgili G., Rodriguez F.J., et al. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes. Surgical results at 12 months. Retina. 2017; 39 (2): 347–57. doi: 10.1097/IAE.0000000000001940

39. Park S.W., Byon I.S., Kim H.Y., et al. Analysis of the ganglion cell layer and photoreceptor layer using optical coherence tomography after idiopathic epiretinal membrane surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253 (2): 207–14. https://doi.org/10.1007/s00417-014-2684-5

40. Торопыгин С.Г.Хирургия тонких интраокулярных структур. Тверь: ИП Орлова З.П.; 2014.

41. Wickham L., Gregor Z.Epiretinal membranes. 5th ed. Los Angeles; 2013; 1954–61. doi.org/10.1016/B978-1-4557-0737-9.00116-8

42. Joe S.G., Lee K.S., Lee J.Y., et al.Inner retinal layer thickness is the major determinant of visual acuity in patients with idiopathic epiretinal membrane. Acta. Ophthalmol. 2013; 91 (3): e242-3. https://doi.org/10.1111/aos.12017

43. Lee E.K., Yu H.G. Ganglion cell-inner plexiform layer thickness after epiretinal membrane surgery: a spectral-domain optical coherence tomography study. Ophthalmology. 2014; 121 (8): 1579–87. https://doi.org/10.1016/j.ophtha.2014.02.010

44. Pilotto E., Benetti E., Convento E., et al.Microperimetry, fundus autofluorescence, and retinal layer changes in progressing geographic atrophy. Can. J. Ophthalmol. 2013; 48 (5): 386–93. https://doi.org/10.1016/j.jcjo.2013.03.022

45. Foos R.Y. Vitreoretinal juncture over retinal vessels. Graefes Arch. Clin. Exp. Ophthalmol. 1977; 204 (4): 223–34.

46. Sun J.K., Radwan S.H., Soliman A.Z., et al.Neural retinal disorganization as a robust maker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015; 64 (7): 2560–70. https://dx.doi.org/10.2337%2Fdb14-0782

47. Ooto S., Hangai M., Tomidokoro A., et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest. Ophthalmol. Vis. Sci. 2011; 52 (12): 8769–79. https://doi.org/10.1167/iovs.11-8388

48. Balazsi A.G., Rootman J., Drance S.M., et al. The effect of age on the nerve fiber population of the human optic nerve. Am. J. Ophthalmol. 1984; 97 (6): 760–66. https://doi.org/10.1016/0002-9394(84)90509-9

49. Kerrigah-Baumrind L.A., Quigley H.A., Pease M.E., et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 2000; 41 (3): 741–8.

50. Hirasawa K., Shoji N.Association between ganglion cell complex and axial length. Jpn. J. Ophthalmol. 2013; 57 (5): 429–34. https://doi.org/10.1007/s10384-013-0241-0

51. Zhao Z., Zhou X., Jiang C., Sun X. Effect of myopia on different areas and layers of the macula: a Fourier-domain optical coherence tomography study of a Chinese cohort. BMC Ophthalmol. 2015; 15: 90. doi: 10.1186/s12886-015-0080-5

52. Higashide T., Ohkubo S., Hangai M., et al. Influence of clinical factors and magnification correction on normal thickness profiles of macular retinal layers using optical coherence tomography. PLoSONE. 2016; 11 (1): e0147782. doi: 10.1371/journal.pone.0147782

53. Kim Y.J., Kim S., Lee J.Y., et al.Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 102 (8): 1086–91. https://doi.org/10.1136/bjophthalmol-2017-311188

54. Koo H.C., Rhim W.I., Lee E.K.Morphologic and functional association of retinal layers beneath the epiretinal membrane with spectral-domain optical coherence tomography in eyes without photoreceptor abnormality. Graefes Arch. Clin. Exp. Ophthalmol. 2012; 250 (4): 491–8. https://doi.org/10.1007/s00417-011-1848-9

55. Kunagai K., Furukawa M., Suetsugu T., Ogino N. Foveal avascular zone area after internal limiting membrane peeling for epiratinal membrane and macular hole compared with that of fellow eyes and healthy controls. Retina. 2017; 38(9): 1786–94. https://doi.org/10.1097/IAE.0000000000001778

56. Romano M.R., Cennamo G., Schiemer S., et al. Deep and superficial OCT angiography changes after macular pelling: idiopathic vs diabetic epiretinal membranes. Graefes Arch. Clin. Exp. Ophthalmol. 2017; 255 (4): 681–89. https://doi.org/10.1007/s00417-016-3534-4

57. Massin P., Allouch C., Haouchine B., et al.Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am. J. Ophthalmol. 2000; 130 (6): 732–9. doi.org/10.1016/S0002-9394(00)00574-2

58. Ahn J.H., Park H.J., Lee J.E., Oum B.S. Effect of intravitreal triamcinolone injection during vitrectomy for idiopathic epiretinal membrane. Retina. 2012; 32 (5): 892–6. https://doi.org/10.1097/IAE.0b013e318229b1f7

59. Hendrickson A., Warner C.E., Possin D., et al.Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Struct. Funct. 2015; 220 (1): 351–60. https://doi.org/10.1007/s00429-013-0659-7


Для цитирования:


Торопыгин С.Г., Назарова С.В., Даварах Х., Маслов А.Н. Прогностические факторы функциональных результатов хирургии идиопатических (первичных) эпимакулярных мембран: морфология наружных и внутренних слоев макулы. Часть 3. Российский офтальмологический журнал. 2021;14(2):103-109. https://doi.org/10.21516/2072-0076-2021-14-2-103-109

For citation:


Toropygin S.G., Nazarova S.V., Dawarah Kh., Maslov A.N. Prognostic factors of functional results of surgery for idiopathic (primary) epimacular membranes: morphology of outer and inner layers of the macula. Part 3. Russian Ophthalmological Journal. 2021;14(2):103-109. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-2-103-109

Просмотров: 114


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)