Прогностические факторы функциональных результатов хирургии идиопатических (первичных) эпимакулярных мембран: морфология наружных и внутренних слоев макулы. Часть 3
https://doi.org/10.21516/2072-0076-2021-14-2-103-109
Аннотация
В третьей части обзора (первую часть см. РОЖ 2020; 13 (2): 99–104, вторую часть см. РОЖ 2020; 13 (4): 105–110) рассматривается структура наружных и внутренних слоев макулы, выявляемая при оптической когерентной томографии в норме, их патоморфология при эпимакулярных мембранах (ЭММ) и ее влияние на состояние зрительных функций при ЭММ.
Об авторах
С. Г. ТоропыгинРоссия
Сергей Григорьевич Торопыгин — д-р мед. наук, доцент, заведующий кафедрой офтальмологии
ул. Советская, д. 4, Тверь, 170100
С. В. Назарова
Россия
Станислава Вячеславна Назарова— аспирант кафедры офтальмологии
ул. Советская, д. 4, Тверь, 170100
Х. Даварах
Россия
Хаиян Даварах — врач-офтальмолог
ул. Советская, д. 4, Тверь, 170100
А. Н. Маслов
Россия
Александр Николаевич Маслов— ассистент кафедры физики, математики и медицинской информатики
ул. Советская, д. 4, Тверь, 170100
Список литературы
1. Kitaya N., Hikichi T., Kagokawa H., et al. Irregularity of photoreceptor layer after successful macular hole surgery prevents visual acuity improvement. Am. J. Ophthalmol. 2004; 138 (2): 308–10. https://doi.org/10.1016/j.ajo.2004.03.004
2. Villate N., Lee J.E., Venkatraman A., et al.Photoreceptor layer features in eyes with closed macular holes: optical coherence tomography findings and correlation with visual outcomes. Am. J. Ophthalmol. 2005; 139 (2): 280–9. https://doi.org/10.1016/j.ajo.2004.09.029
3. Лумбросо Б., Рисполи М. ОКТ (сетчатка, сосудистая оболочка, глаукома). Пер. с английского. Москва: БИНОМ; 2014.
4. Srinivasan V.J., Monson B.K., Wojtkowski M., et al. Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2008; 49 (4): 1571–9. doi: 10.1167/iovs.07-0838
5. Fiho C.A., Yehoshua Z., Gregori G. Optical coherence tomography. Los Angeles: Retina; 2013: 82–110.
6. Mitamura Y., Mitamura-Aizawa S., Katome T., et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J. Ophthalmol. 2013: 518170. doi: 10.1155/2013/518170
7. Gabriele M.L., Wollstein G., Ishikawa H., et al. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol. Vis. Sci. 2011; 52 (5): 2425–36. https://doi.org/10.1167/iovs.10-6312
8. Gloesmann M., Hermann B., Schubert C., et al.Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 2003; 44 (4): 1696–703. https://doi.org/10.1167/iovs.02-0654
9. Spaide R. F., Curcio C. A.Anatomical correlates to the bands seen in the outer retina by optical coherence tomography: literature review and model. Retina. 2011; 31 (8): 1609–19. https://doi.org/10.1097/IAE.0b013e3182247535
10. Лумбросо Б., Рисполи М. ОКТ сетчатки. Метод анализа и интерпретации. Москва: Апрель; 2012.
11. Yamamoto S., Arai M., et al. Correlation of visual recovery and presence of photoreceptor inner/outer segment junction in optical coherence images after successful macular hole repair. Retina. 2008; 28 (3): 453–8. https://doi.org/10.1097/IAE.0b013e3181571398
12. Staurenghi G., Sadda S., Chakravarthy U., et al. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The IN OCT consensus. Ophthalmology 2014 Aug; 121 (8): 1572–8. doi: 10.1016/j.ophtha.2014.02.023
13. Bunt-Milam A.H., Saari J.C., Klock I.B., Garwin G.G. Zonulae adherents pore size in the external limiting membrane of the rabbit retina. Invest. Ophthalmol. Vis. Sci. 1985; 26 (10): 1377–80.
14. Omri S., Omri B., Savoldelli M., et al.The outer limiting membrane (OLM) revisited: clinical implications. Clinical Ophthalmology. 2010; 4: 183–95. https://doi.org/10.2147/opth.s5901
15. Ko T.H., Fujimoto J.G., Duker J.S., et al. Comparison of ultrahigh- and standard resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology. 2004; 111 (11): 2033–43. https://doi.org/10.1016/j.ophtha.2004.05.021
16. Costa R.A., Calucci D., Skaf M., et al.Optical coherence tomography 3: automatic delineation of the outer neural retinal boundary and its influence on retinal thickness measurements. Invest. Ophthalmol. Vis. Sci. 2004; 45 (7): 2399–406. https://doi.org/10.1167/iovs.04-0155
17. Drexler W., Sattmann H., Herman B., et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch. Ophthalmol. 2003; 121 (5): 695–706. https://doi.org/10.1001/archopht.121.5.695
18. Cho K.H., Park S.J., Woo S.J., Park K.H. Correlation between inner-retinal changes and outer-retinal damage in patients with idiopathic epiretinal membrane. Retina. 2018; 38 (12): 2327–35. doi: 10.1097/IAE.0000000000001875
19. Rii T., Itoh Y., Inoue M., Hirakata A. Foveal cone outer segment tips line and disruption artifacts in spectral-domain optical coherence tomographic images of normal eyes. Am. J. Ophthalmol. 2012; 153 (3): 524–29. https://doi.org/10.1016/j.ajo.2011.08.021
20. Mayer W.J., Vogel M., Neubauer A., et al. Pars plana vitrectomy and internal limiting membrane peeling in epimacular membranes: correlation of function and morphology across the macula. Ophthalmologica. 2013; 230: 9–17. doi.org/10.1159/000350233
21. Mitamura Y., Hirano K., Baba T., Yamamoto S. Correlation of visual recovery with presence of photoreceptor inner/outer segment junction in optical coherence images afterepiretinal membrane surgery. Br. J. Ophthalmol. 2009; 93 (2): 171–5. doi: 10.1136/bjo.2008.146381
22. Shimozono M., Oishi A., Hata M., et al. The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery. Am. J. Ophthalmol. 2012; 153 (4): 698–704. doi.org/10.1016/j.ajo.2011.09.011
23. Suh M.H., Seo J.M., Park K.H., Yu H.G. Associations between macular findings by optical coherence tomography and visual outcomes after epiretinal membrane removal. Am. J. Ophthalmol. 2009; 147 (3): 473–80. doi.org/10.1016/j.ajo.2008.09.020
24. Hangai M., Ojima Y., Yoshida A., et al.Improved visualization of foveal pathologies using fourier-domain optical coherence tomography. Nippon Ganka Gakkai Zasshi. 2007; 111 (7): 509–17.
25. Ota M., Tsujikawa A., Murakami T., et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br. J. Ophthalmol. 2007; 91 (12): 1644–49. https://dx.doi.org/10.1136%2Fbjo.2007.118497
26. Oishi A., Hata M., Shimozono M., et al. The significance of external limiting membrane status for visual acuity in age-related macular degeneration. Am. J. Ophthalmol. 2010; 150 (1): 27–32. https://doi.org/10.1016/j.ajo.2010.02.012
27. Shimozono M., Oishi A., Hata M., Kurimoto Y.Restoration of the photoreceptor outer segment and visual outcomes after macular hole closure: spectral-domain optical coherence tomography analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (10): 1469–76. https://doi.org/10.1007/s00417-011-1681-1
28. Wakabayashi T., Fujiwara M., Sakaguchi H., et al. Foveal microstructure and visual acuity in surgically closed macular holes: spectral-domain optical coherence tomographic analysis. Ophthalmology. 2010; 117 (9): 1815–24. https://doi.org/10.1016/j.ophtha.2010.01.017
29. Sakai T., Calderone J.B., Lewis G.P., et al.Cone photoreceptor recovery after experimental detachment and reattachment: An immunocytochemical, morphological, and electrophysiological study. Invest. Ophthalmol. Vis. Sci. 2003; 44 (1): 416–25. https://doi.org/10.1167/iovs.02-0633
30. Bottoni F., De Angelis S., Luccarelli S., et al. The dynamic healing process of idiopathic macular holes after surgical repair: A spectral-domain optical coherence tomography study. Invest. Ophthalmol. Vis. Sci. 2011; 52 (7): 4439–46. https://doi.org/10.1167/iovs.10-6732
31. Ooka E., Mitamura Y., Baba T., et al.Foveal microstructure on spectral-domain optical coherence tomographic images and visual function after macular hole surgery. Am. J. Ophthalmol. 2011; 152 (2): 283–90. e1. https://doi.org/10.1016/j.ajo.2011.02.001
32. Ahn S.J., Ahn J., Woo S.J., Park K.H.Photoreceptor change and visual outcome after idiopathic epiretinal membrane removal with or without additional internal limiting membrane peeling. Retina. 2014; 34 (1): 172–181. doi: 10.1097/IAE.0b013e318295f798
33. Cho K.H., Park S.J., Cho J.H., et al.Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane. Am. J. Ophthalmol. 2016; 168: 139–49. doi.org/10.1016/j.ajo.2016.05.011
34. Brito P.N., Gomes N.L., Vieira M.P., et al.Possible role for fundus autofluorescence as a predictive factor for visual acuity recovery after epiretinal membrane surgery. Retina. 2014; 34 (2): 273–80. https://doi.org/10.1097/IAE.0b013e3182999a02
35. Inoue M., Morita S., Watanabe Y., et al.Inner segment/outer segment junction assessed by spectral-domain optical coherence tomography in patients with idiopathic epiretinal membrane. Am. J. Ophthalmol. 2010; 150 (6): 834–39. doi: 10.1016/j.ajo.2010.06.006
36. Itoh Y., Inoue M., Rii T., et al. Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery. Invest. Ophthalmol. Vis. Sci. 2013; 54 (12): 7302–08. doi:10.1167/iovs.13-12702
37. Govetto A., Lalane R.A., Sarraf D., et al. Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme. Am. J. Ophthalmol. 2017; 175: 99–113. https://doi.org/10.1016/j.ajo.2016.12.006
38. Govetto A., Virgili G., Rodriguez F.J., et al. Functional and anatomical significance of the ectopic inner foveal layers in eyes with idiopathic epiretinal membranes. Surgical results at 12 months. Retina. 2017; 39 (2): 347–57. doi: 10.1097/IAE.0000000000001940
39. Park S.W., Byon I.S., Kim H.Y., et al. Analysis of the ganglion cell layer and photoreceptor layer using optical coherence tomography after idiopathic epiretinal membrane surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253 (2): 207–14. https://doi.org/10.1007/s00417-014-2684-5
40. Торопыгин С.Г.Хирургия тонких интраокулярных структур. Тверь: ИП Орлова З.П.; 2014.
41. Wickham L., Gregor Z.Epiretinal membranes. 5th ed. Los Angeles; 2013; 1954–61. doi.org/10.1016/B978-1-4557-0737-9.00116-8
42. Joe S.G., Lee K.S., Lee J.Y., et al.Inner retinal layer thickness is the major determinant of visual acuity in patients with idiopathic epiretinal membrane. Acta. Ophthalmol. 2013; 91 (3): e242-3. https://doi.org/10.1111/aos.12017
43. Lee E.K., Yu H.G. Ganglion cell-inner plexiform layer thickness after epiretinal membrane surgery: a spectral-domain optical coherence tomography study. Ophthalmology. 2014; 121 (8): 1579–87. https://doi.org/10.1016/j.ophtha.2014.02.010
44. Pilotto E., Benetti E., Convento E., et al.Microperimetry, fundus autofluorescence, and retinal layer changes in progressing geographic atrophy. Can. J. Ophthalmol. 2013; 48 (5): 386–93. https://doi.org/10.1016/j.jcjo.2013.03.022
45. Foos R.Y. Vitreoretinal juncture over retinal vessels. Graefes Arch. Clin. Exp. Ophthalmol. 1977; 204 (4): 223–34.
46. Sun J.K., Radwan S.H., Soliman A.Z., et al.Neural retinal disorganization as a robust maker of visual acuity in current and resolved diabetic macular edema. Diabetes. 2015; 64 (7): 2560–70. https://dx.doi.org/10.2337%2Fdb14-0782
47. Ooto S., Hangai M., Tomidokoro A., et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest. Ophthalmol. Vis. Sci. 2011; 52 (12): 8769–79. https://doi.org/10.1167/iovs.11-8388
48. Balazsi A.G., Rootman J., Drance S.M., et al. The effect of age on the nerve fiber population of the human optic nerve. Am. J. Ophthalmol. 1984; 97 (6): 760–66. https://doi.org/10.1016/0002-9394(84)90509-9
49. Kerrigah-Baumrind L.A., Quigley H.A., Pease M.E., et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 2000; 41 (3): 741–8.
50. Hirasawa K., Shoji N.Association between ganglion cell complex and axial length. Jpn. J. Ophthalmol. 2013; 57 (5): 429–34. https://doi.org/10.1007/s10384-013-0241-0
51. Zhao Z., Zhou X., Jiang C., Sun X. Effect of myopia on different areas and layers of the macula: a Fourier-domain optical coherence tomography study of a Chinese cohort. BMC Ophthalmol. 2015; 15: 90. doi: 10.1186/s12886-015-0080-5
52. Higashide T., Ohkubo S., Hangai M., et al. Influence of clinical factors and magnification correction on normal thickness profiles of macular retinal layers using optical coherence tomography. PLoSONE. 2016; 11 (1): e0147782. doi: 10.1371/journal.pone.0147782
53. Kim Y.J., Kim S., Lee J.Y., et al.Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 102 (8): 1086–91. https://doi.org/10.1136/bjophthalmol-2017-311188
54. Koo H.C., Rhim W.I., Lee E.K.Morphologic and functional association of retinal layers beneath the epiretinal membrane with spectral-domain optical coherence tomography in eyes without photoreceptor abnormality. Graefes Arch. Clin. Exp. Ophthalmol. 2012; 250 (4): 491–8. https://doi.org/10.1007/s00417-011-1848-9
55. Kunagai K., Furukawa M., Suetsugu T., Ogino N. Foveal avascular zone area after internal limiting membrane peeling for epiratinal membrane and macular hole compared with that of fellow eyes and healthy controls. Retina. 2017; 38(9): 1786–94. https://doi.org/10.1097/IAE.0000000000001778
56. Romano M.R., Cennamo G., Schiemer S., et al. Deep and superficial OCT angiography changes after macular pelling: idiopathic vs diabetic epiretinal membranes. Graefes Arch. Clin. Exp. Ophthalmol. 2017; 255 (4): 681–89. https://doi.org/10.1007/s00417-016-3534-4
57. Massin P., Allouch C., Haouchine B., et al.Optical coherence tomography of idiopathic macular epiretinal membranes before and after surgery. Am. J. Ophthalmol. 2000; 130 (6): 732–9. doi.org/10.1016/S0002-9394(00)00574-2
58. Ahn J.H., Park H.J., Lee J.E., Oum B.S. Effect of intravitreal triamcinolone injection during vitrectomy for idiopathic epiretinal membrane. Retina. 2012; 32 (5): 892–6. https://doi.org/10.1097/IAE.0b013e318229b1f7
59. Hendrickson A., Warner C.E., Possin D., et al.Retrograde transneuronal degeneration in the retina and lateral geniculate nucleus of the V1-lesioned marmoset monkey. Brain Struct. Funct. 2015; 220 (1): 351–60. https://doi.org/10.1007/s00429-013-0659-7
Рецензия
Для цитирования:
Торопыгин С.Г., Назарова С.В., Даварах Х., Маслов А.Н. Прогностические факторы функциональных результатов хирургии идиопатических (первичных) эпимакулярных мембран: морфология наружных и внутренних слоев макулы. Часть 3. Российский офтальмологический журнал. 2021;14(2):103-109. https://doi.org/10.21516/2072-0076-2021-14-2-103-109
For citation:
Toropygin S.G., Nazarova S.V., Dawarah H., Maslov A.N. Prognostic factors of functional results of surgery for idiopathic (primary) epimacular membranes: morphology of outer and inner layers of the macula. Part 3. Russian Ophthalmological Journal. 2021;14(2):103-109. (In Russ.) https://doi.org/10.21516/2072-0076-2021-14-2-103-109