Preview

Russian Ophthalmological Journal

Advanced search

Difference in profile of peripheral defocus after orthokeratology and eximer laser correction of myopia

https://doi.org/10.21516/2072-0076-2017-10-1-31-35

Abstract

A variety of factors that change the topography of the cornea may also induce changes in peripheral refraction. Purpose. The paper is aimed at assessing the peripheral refraction and retinal contour of myopic eyes after FS-LASIK and orthokeratological (Ortho-k) correction. Materials and methods. We examined a total of 30 patients (60 eyes) aging from 28.86 ±2.83 years which included 12 patients (24 eyes) with myopia of -5.11 ± 0.5 D and with an axial length (AL) of 25.04 ±0.33 mm before and 1 month after FS-LASIK surgery, and also included 18 patients (36 eyes) with myopia of -5.4 ± 0.24 D and AL of 25.78 ± 0.2 mm who wore ESA-DL Ortho-k lenses. The peripheral refraction of all the patients was measured using the Grand Seiko Open-field binocular autoref/keratometer and the peripheral eye length was measured using the IOL Master 500 (Carl Zeiss) at 15° and 30º nasally (N) and temporally (T), respectively, from the center of fovea. Results. The peripheral eye length measured before and after FS-LASIK as well as after Ortho-k correction was less in all peripheral zones than in the center, which corresponds to characteristics observed in hyperopic peripheral defocus. Refraction measured after FS-LASIK showed the formation of myopic defocus with a maximum at 30° from the following results: -2.49 D at T15°, -2.5 D at N15°, -6.73 D at T30°, and -7.8 D at N30°. The maximal myopic defocus after Ortho-k correction was detected in the middle periphery from these following results: -4.89 D at T15°, -5.51 D at N15°, -2.92 D at T30° and -2.4 D at N30°. Conclusions. Both procedures induced a significant peripheral myopic defocus. In the first case, the maximum values of defocus were detected in the peripheral zone (30° from the center of the fovea); in the second case, the maximal effect on the middle periphery was identified 15° from the center. Such patterns of peripheral refraction fully coincided with the specific changes in corneal topography after the two procedures. The retinal contour within 30° from the center retained the relative hyperopic defocus characteristic of intact myopic eyes // Russian Ophthalmological Journal, 2017; 1: 31-5. doi: 10.21516/2072-0076-2017-10-1-31-35.

About the Authors

V. V. Neroev
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


E. P. Tarutta
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


A. T. Khandzhyan
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


N. V. Khodzhabekyan
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


S. V. Milash
Moscow Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


References

1. Norton T.T. Animal models of myopia: learning how vision controls the size of the eye. ILAR J. 1999; 40(2): 59-77.

2. Wallman J., Winawer J. Homeostasis of eye growth and the question of myopia. Neuron 2004; 43: 447-68.

3. Smith E.L. 3rd, Hung L.F., Arumugam B. Visual regulation of refractive development: insights from animal studies. Eye (Lond). 2014; 28: 180-8.

4. Smith E.L. 3rd, Ramamirtham R., Qiao-Grider Y., et al. Effects of foveal ablation on emmetropization and form-deprivation myopia. Invest Ophthalmol Vis Sci. 2007;48 (9): 3914-22.

5. Smith E.L. 3rd, Huang J., Hung L.F., et al. Hemiretinal form deprivation: evidence for local control of eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2009; 50: 5057-69.

6. Ticak A., Walline J.J. Peripheral optics with bifocal soft and corneal reshaping contact lenses. Optom Vis Sci. 2013; 90(1): 3-8.

7. Тарутта Е.П., Проскурина О.В., Милаш С.В. и др. Индуцированный очками «Perifocal-M» периферический дефокус и прогрессирование миопии у детей. Российская педиатрическая офтальмология. 2015; 2: 33-7.

8. Cho P., Cheung S.W. Retardation of Myopia in Orthokeratology (ROMIO) Study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012; 53:7077-85.

9. Santodomingo-Rubido J., Villa Collar C., Gilmartin B., Gutierrez-Ortega R. Myopia Control with Orthokeratology Contact Lenses in Spain (MCOS). Invest Ophthalmol Vis Sci. 2012; 2: 215-22.

10. Si J.K., Tang K., Bi H.S., et al. Orthokeratology for myopia control: a meta-analysis. Optometry and Vision Science. 2015; 92: 252-7.

11. Тарутта Е.П., Вержанская Т.Ю. Возможные механизмы тормозящего влияния ортокератологических линз на прогрессирование миопии. Российский офтальмологический журнал. 2008; 2: 26-30.

12. Ma L., Atchison D.A., Charman W.N. Off-axis refraction and aberrations following conventional laser in situ keratomileusis. J Cataract Refract Surg 2005; 31:489-98.

13. Queiros A., Villa-Collar C., Jorge J., Gutierrez A.R., Gonzalez-Meijome J.M. Peripheral refraction in myopic eyes after LASIK surgery. Optom. Vis Sci. 2012; 89: 977-83.

14. Тарутта Е.П., Милаш С.В., Тарасова Н.А. и др. Периферическая рефракция и контур сетчатки у детей с миопией по результатам рефрактометрии и частично когерентной интерферометрии. Вестник офтальмологии. 2014; 6:44-9.

15. Tay E., Li X., Gimbel H.V., Kaye G. Assessment of axial length before and after myopic LASIK with the IOL Master. J Refract Surg. 2013; 29(12): 838-41.


Review

For citations:


Neroev V.V., Tarutta E.P., Khandzhyan A.T., Khodzhabekyan N.V., Milash S.V. Difference in profile of peripheral defocus after orthokeratology and eximer laser correction of myopia. Russian Ophthalmological Journal. 2017;10(1):31-35. https://doi.org/10.21516/2072-0076-2017-10-1-31-35

Views: 684


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)