Preview

Russian Ophthalmological Journal

Advanced search

Visual Evoked Potentials of the Retina and Visual Cortex after a Prolonged Exposure to the Radiation of LED Fixtures with Variable Spectral Energy Characteristics

https://doi.org/10.21516/2072-0076-2016-9-1-48-55

Abstract

The paper’s objective was to determine the nature of changes in the bioelectric activity of the retina and the visual cortex in conditions of long-term staying of man in an enclosed space with artificial light generated by light-emitting diode (LED) lamps with variable spectral and power characteristics. In addition to a set of standard ophthalmic examinations, we recorded electroretinograms (ERG) to diffuse flashes, pattern-reversing and multifocal stimuli, and visual evoked cortical potentials (VEP) using the diagnostic system RETIport/scan21. The examinations were carried out in four healthy volunteers before and after an 11-day hermetic-chamber experiment simulating conditions of the spacecraft. Prolonged exposure to closed LED lighting created by sources with a high correlated color temperature (CCT), was shown to have no pronounced negative impact on the function of the retina. Changes in the amplitude of the ERG and VEP were minor, but displayed certain features specified by the history of previous injuries or functional disorders. Also, according to VEP waveforms to reversing checkerboard pattern, a characteristic sign of changes in the activity of the visual system in all participants was a splitting of the P100 peak, possibly related to temporal uncoupling of the activity of various visual channels. Thus, artificial LED lighting with high CCT can have both positive and adverse effects on the functional activity of the retina and the visual cortex, the nature of which, apparently, depends on the initial functional state of the visual system // Russian Ophthalmological Journal, 2016; 1: 48-55.

About the Authors

V. V. Neroev
Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


I. B. Ushakov
Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow
Russian Federation


M. V. Zueva
Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


O. M. Manko
Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow
Russian Federation


E. P. Lantukh
Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


I. V. Tsapenko
Helmholtz Research Institute of Eye Diseases, Moscow, Russia
Russian Federation


A. E. Smoleevsky
Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow
Russian Federation


G. A. Nazarova
Doctor Visus Ophthalmic Center, Moscow, Russia
Russian Federation


References

1. Островский М.А. Молекулярные механизмы повреждающего действия света на структуры глаза и системы защиты от такого повреждения. Успехи биологической химии. 2005; 45: 173-204.

2. Brainard G.C., Hanifin J.P., Greeson J.M., et al. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J. Neurosci. 2001; 21(16): 6405-12.

3. Arnault E., Barrau C., Nanteau C., et al. Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS ONE. 2013; 8(8): e71398.

4. Hood D.C., Bach M., Brigell M., et al. ISCEV standard for clinical multifocal electroretinography (mfERG) (2011 edition). Doc. Ophthalmol. 2012; 124: 1-13.

5. McCulloch D.L., Marmor M.F., Brigell M.G., et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc. Ophthalmol. 2015; 130: 1-12.

6. Bach M., Brigell M.G., Hawlina M., et al. ISCEV standard for clinical pattern electroretinography (PERG) - 2012 update. Doc. Ophthalmol. 2013; 124: 1-13.

7. Odom J.V., Bach M., Brigell M., et al. ISCEV standard for clinical visual evoked potentials (2009 update). Doc. Ophthalmol. 2010; 120: 111-9.

8. Chiappa K.H., Jayakar J. Evoked potentials in clinical medicine. In: Baker A.B., Baker L.H., eds. Clinical neurology. New York, NY; Harper&Row, 1989; 7: 148.

9. Misra U.K., Kalita J., eds. Visual Evoked Potential, Clinical Neurophysiology. Churchill Livingstone, New Delhi. 2011; 309-27.

10. Blumhardt L.D. Visual field defects and pathological alterations in topography: factors complicating the estimation of visual evoked response “delay” in multiple sclerosis. In: Cracco R.Q., Bodis-Wollner I., eds. Evoked Potentials. N.Y.: Alan R. Liss; 1986; 354-65.

11. Bynke H., Olsson J.E., Rosen I. Diagnostic value of visual evoked responses, clinical eye examination and CSF analysis in chronic myelopathy. Acta Neurol. Scand. 1977; 56: 55-69.

12. Hoepper T., Lolas F. Visual evoked responses and visual symptoms in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1978; 41: 493-8.

13. Carrol W.M., Halliday A.M., Kriss A. Improvement in the accuracy of pattern visual evoked potentials in the diagnosis of visual pathway disease. Neuroophthalmology. 1982; 2: 237-53.

14. Mortimer M.J., Good P.A., Marsters J.B., Addy D.P. Visual evoked responses in children with migraine: a diagnostic test. Lancet. 1990; 335: 75-7.

15. Sannita W.G., Lopez L., Piras C., Di Bon G. Scalprecorded oscillatory potentials evoked by transient pattern-reversal stimulation in man. Electroenceph. Clin. Neurophysiol. 1995; 96: 206-18.

16. Kothari R., Singh R., Singh S., Bokariya P. Occurrence of “W” pattern in visual evoked potentials of primary open angle glaucomatous patients. Curr. Neurobiol. 2012; 3: 123-8.

17. Narici L., Carozzo S., Lopez L., Ogliastro C., Sannita W.G. Phaselocked oscillatory 15-30 Hz response to transient visual contrast stimulation: neuromagnetic evidence for cortical origin in humans. Neuroimage. 2003; 19: 950-58.

18. Sannita W.G. Oscillatory responses and gamma activity. In: Celesia G.G., ed. Disorders of visual processing. Handbook of clinical neurophysiology. Elsevier Publishing Company; 2005.

19. Sannita W.G. Stimulus-specific oscillatory responses of the brain: a time/frequency-related coding process (review). Clin. Neurophysiol. 2000; 111: 565-83.

20. Sannita W.G., Carozzo S., Fioretto M., Garbarino S., Martinoli C. Abnormal waveform of the human pattern VEP: contribution from gamma oscillatory components. Invest. Ophthalmol. Vis. Sci. 2007; 48(10): 4534-41.

21. Maunsell J.H.R. Functional visual streams. Curr. Opin. Neurobiol. 1992; 2: 506-10.

22. Vandewalle G., Gais S., Schabus M., et al. Wavelength-dependent modulation of brain responses to a working memory task by daytime light exposure. Cereb. Cortex. 2007; 17: 2788-95.

23. Vandewalle G., Schmidt C., Albouy G., et al. Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem. PLoS ONE. 2007; 2:e1247.

24. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B. 1999; 49: 1-17.

25. Karu T.I., Kolyakov S.F. Exact action spectra for cellular responses relevant to phototherapy. Photomed. Laser Surg. 2005; 23(4): 355-61.

26. Sutherland J.C. Biological effects of polychromatic light. Photochem. Photobiol. 2002; 76: 164-70.

27. Whelan H.T., Wong-Riley M.T.T., Eells J.T., et al. DARPA Soldier Self Care: Rapid Healing of Laser Eye Injuries with Light Emitting Diode Technology. In: The RTO HFM Symposium on “Combat Casualty Care in Ground Based Tactical Situations: Trauma Technology and Emergency Medical Procedures”. St. Pete Beach, USA, 2004; RTO-MP-HFM-109: P19-1 - P19-18.

28. Albarracin R., Eells J., Valter K. Photobiomodulation Protects the Retina from Light-Induced Photoreceptor Degeneration. Invest Ophthalmol Vis Sci. 2011; 52: 3582-92.

29. Зуева M.В., Иванина Т.А. Повреждающее действие видимого света на сетчатку в эксперименте (электрофизиологические и электронно-микроскопические исследования). Вестник офтальмологии. 1980; 4: 48-51.

30. Аладов А.В., Закгейм А.Л., Мизеров М.Н., Черняков А.Е. О биологическом эквиваленте излучения светодиодных и традиционных источников света с цветовой температурой 1800-10000 K. Светотехника. 2012; 3: 7-10.

31. Корсакова Е.А., Слезин В.Б., Шульц Е.В. и др. Воздействие белого света с варьируемой цветовой температурой на электроэнцефалограмму человека. Вестник новых медицинских технологий. 2012; 9(4): 30-3.

32. CEI/IEC 62471/2006. Photobiological safety of lamps and lamp systems. International Standard. 2006.

33. Dorfman A.L., Joly S., Hardy P., Chemtob S., Lachapelle P. The effect of oxygen and light on the structure and function of the neonatal rat retina. Doc. Ophthalmol. 2009; 118: 37-54.

34. Huang Y.Y., Chen A.C., Carroll J.D., Hamblin M.R. Biphasic dose response in low level light therapy. Dose Response. 2009; 7(4): 358-83.

35. Mather L. FDA approves LED light therapy device from BioPhotas. Available at http://www.bioopticsworld.com/articles/2013/01/fda-approves-led-light-therapy-device-from-biophotas.html

36. SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks). «Health Effects of Artificial Light». 2013. Available at http://ec.europa.eu/health/scientific_committees/ emerging/docs/scenihr_o_033.pdf

37. Зак П.П., Островский М.А. Потенциальная опасность освещения светодиодами для глаз детей и подростков. Светотехника. 2012; 3: 39-42. Zakh P.P., Ostrovsky M.A. The potential danger of LED lighting for the eyes of children and adolescents. Svetotehnika. 2012; 3: 39-42 (in Russian).

38. Ham W.T., Mueller H.A., Sliney D.H. Retinal sensitivity to damage from short wavelength light. Nature. 1976; 260(5547): 153-5.

39. Kitchel E. The Effects of Blue Light on Ocular Health. J. Vis. Impair. Blind. 2000; 94(6): 357-61.

40. Роспотребнадзор. Об организации санитарного надзора за ис- пользованием энергосберегающих источников света. Письмо № 01/11157-32 от 01.10.2012.


Review

For citations:


Neroev V.V., Ushakov I.B., Zueva M.V., Manko O.M., Lantukh E.P., Tsapenko I.V., Smoleevsky A.E., Nazarova G.A. Visual Evoked Potentials of the Retina and Visual Cortex after a Prolonged Exposure to the Radiation of LED Fixtures with Variable Spectral Energy Characteristics. Russian Ophthalmological Journal. 2016;9(1):48-55. (In Russ.) https://doi.org/10.21516/2072-0076-2016-9-1-48-55

Views: 606


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)