Preview

Russian Ophthalmological Journal

Advanced search

A comparative analysis of clinical, functional and morphological results of femtosecond, trans-epithelial and standard corneal collagen cross-linking

https://doi.org/10.21516/2072-0076-2017-10-2-47-53

Abstract

Purpose: to compare clinical, functional and morphological results of treatment of progressing keratoconus by femtosecond, trans-epithelial and standard corneal collagen crosslinking. Material and methods. 114 patients aged 18-35 (148 eyes) with progressing keratoconus of stages I-III and iatrogenic keratectasia were divided into three groups. Group 1 (39 patients, 47 eyes) received femtosecond corneal collagen crosslinking; group 2 (33 patients, 45 eyes) underwent transepithelial crosslinking and group3 underwent crosslinking performed with standard technique. Results. The analysis of data of confocal microscopy performed 1 year after femtosecond and standard corneal collagen crosslinking revealed the effect of cross linkage in the anterior and middle corneal stroma, an increased density of the extracellular matrix, regeneration of subepithelial and stromal nervous fibers, and keratocyte repopulation. 1 year after trans epithelial crosslinking, keratocyte population was restored. Slight folding in the anterior stroma was observed due to the cross linkage effect. Conclusion. The preserved epithelial layer of the cornea reduces the risk of infectious complications on the eroded surface of the cornea, diminishes visual discomfort and sensation of pain in patients in the early postoperative period, and shortens the rehabilitation period. After trans-epithelial corneal collagen crosslinking, no pronounced effect of cross linkage in the stroma was observed. The available weak positive result justifies the recommendation to use this technique in children, patients with thin cornea, those likely to develop complications during reepithelization, and as a preventive measure in cases of slow progression rate // Russian ophthalmological journal. 2017; 10 (2): 47-53. (in Russian). doi: 10.21516/2072-0076-2017-10-2-47-53.

About the Authors

V. V. Neroev
Moscow Helmholtz Research Institute of Eye Diseases, Russia
Russian Federation


A. T. Khandzhyan
Moscow Helmholtz Research Institute of Eye Diseases, Russia
Russian Federation


O. G. Oganesyan
Moscow Helmholtz Research Institute of Eye Diseases, Russia
Russian Federation


A. V. Penkina
Moscow Helmholtz Research Institute of Eye Diseases, Russia
Russian Federation


K. B. Letnikova
Moscow Helmholtz Research Institute of Eye Diseases, Russia
Russian Federation


References

1. Rabinowitz Y.S. Keratoconus. Surv. Ophthalmol. 1998; 42 (4): 297-319.

2. Rabinowitz Y.S. The genetics of keratoconus. Ophthalmol. Clin. North. Am. 2003; 16 (4): 607-20.

3. Slusher M.M., Laibson P.R., Mulberger R.D. Acute keratoconus in Down`s syndrome. Am. J. Ophthalmol. 1968; 66: 1137-43.

4. Maumenee I.H. The eye in the Marfan syndrome. Trans Am. Ophthalmol. Soc. 1981; 79: 684-733.

5. Davies P.D., Lobascher D., Menon J.A., Rahi A., Ruben M. Immunological studies in keratoconus. Trans Ophthalmol. Soc. UK 1976; 96 (1): 173-8.

6. Wilson S.E., He Y.G., Weng J., et al. Epithelial injury induces keratocyte apoptosis: hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp. Eye Res. 1996; 62 (4): 325-8.

7. Binder P.S., Trattler W.B. Evaluation of a risk factor scoring system for corneal ectasia after LASIK in eyes with normal topography. J. Refract. Surg. 2010; 26 (4): 241-50.

8. Randleman J.B., Russel B., Ward M.A., Thompson K.P., Stulting R.D. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology.2003; 110 (2): 267-75.

9. Randleman J.B. Ectasia after LASIK: new treatment, new hope. J. Refract. Surg. 2011; 27 (5): 319.

10. Wollensak G., Spoerl G., Seiler T. Riboflavin/Ultraviolet-A-induced collagen crosslinking for the treatment of keratokonus. Am. J. Opthalmol. 2003; 135: 620-7.

11. McCall A.S., Kraft S., Edelhauser H.F., et al. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest. Ophthalmol. Vis. Sci. 2010; 51: 129-38.

12. Zhang Y., Conrad A.H., Conrad G.W. Effects of ultraviolet-A and riboflavin on the interaction of collagen and proteoglycans during corneal collagen cross-linking. J. Biol. Chem. 2011; 286 (15): 13011-22.

13. Wollensak G., Iomdina E., Dittert D.-D., Herbst H. Wound Healing in the Rabbit Cornea after Corneal Collagen-Crosslinking using Riboflavin and UVA. Cornea. 2007; 26: 600-5.

14. Нероев В.В., Ханджян А.Т., Пенкина А.В., Склярова А.С. Применение кросслинкинга роговичного коллагена для лечения кератоконуса I-II стадии. Российский офтальмологический журнал. 2012; 5 (1): 62-4.

15. Mackiewicz Z., Määttä M., Stenman M., et al. Collagenolytic proteinases in keratoconus. Cornea. 2006; 25 (5): 603-10.

16. Magli A., Forte R., Tortori A., et al. Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea. 2013; 32 (5): 46-9.

17. Wollensak G., Iomdina E. Biomechanical and histological changes after corneal cross-linking with and without epithelial debridement. J. Cataract. Refract. Surg. 2009; 35 (8): 540-6.

18. Pinelli R. C-3-Riboflavin for the treatment of keratoconus. J. Cataract. Refract. Surg. 2006; 1 (4): 49-50.

19. Krueger R.R., Ramos-Esteban J.C., Kanellopoulos A.J. Staged intrastromal delivery of riboflavin with UVA cross-linking in advanced bullous keratopathy: laboratory investigation and first clinical case. J. Refract. Surg. 2008; 24 (7): 730-6.

20. Паштаев Н.П., Зотов В.В. Сравнительный анализ отдаленных результатов стандартного и локального фемтокросслинкинга у больных с прогрессирующим кератоконусом. Вестник ОГУ. 2014; 12 (173): 248-51.

21. Grewal D.S., Brar G.S., Jain R., et al. Corneal collagen crosslinking using riboflavin and ultraviolet-A light for keratoconus: one-year analysis using Scheimpflug imaging. J. Cataract. Refract. Surg. 2009. Mar; 35 (3): 425-32.

22. Sedaghat M., Naderi M., Zarei-Ghanavati M. Biomechanical parameters of the cornea after collagen crosslinking measured by waveform analysis. J. Cataract. Refract. Surg. 2010; 36 (10 Oct.): 1728-31.

23. Steinberg J., Ahmadiyar M., Rost A., et al. Anterior and posterior corneal changes after crosslinking for keratoconus. Optom. Vis. Sci. 2014; 91 (2 Feb.): 178-86.

24. Lanchares E., del Buey M.A., Cristóbal J.A., Lavilla L., Calvo B. Biochemical property analysis after corneal collagen cross-linking in relation to ultraviolet A irradiation time. Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (8): 1223-7.

25. Touboul D., Efron N., Smadja D., et al. Corneal confocal microscopy following conventional, transepithelial, and accelerated collagen cross-linking procedure for keratoconus. J. Refract. Surg. 2012; 28 (11): 769-76.


Review

For citations:


Neroev V.V., Khandzhyan A.T., Oganesyan O.G., Penkina A.V., Letnikova K.B. A comparative analysis of clinical, functional and morphological results of femtosecond, trans-epithelial and standard corneal collagen cross-linking. Russian Ophthalmological Journal. 2017;10(2):47-53. (In Russ.) https://doi.org/10.21516/2072-0076-2017-10-2-47-53

Views: 552


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)