Preview

Russian Ophthalmological Journal

Advanced search

Evaluation of morphometric parameters of the optic disc in patients with diverse clinical forms of openangle glaucoma

https://doi.org/10.21516/2072-0076-2022-15-2-supplement-24-30

Abstract

Purpose. To compare the thickness of the prelaminar layer of nerve fibers and the depth of the lamina cribrosa in patients with diverse forms of open-angle glaucoma, measured by optical coherence tomography (OCT).

Material and methods. 130 patients aged 71.4 ± 9.7 with stage II (advanced) glaucoma were divided into three groups depending on the form of glaucoma: group 1 of 39 patients with primary openangle glaucoma (POAG); group 2 of 26 patients with normal-tension glaucoma (NTG); group 3 of 22 patients with pseudoexfoliative glaucoma (PEG). The control group consisted of 43 patients without ophthalmic pathology. All patients were scanned for the optic disc and the macular areas in the OCT Disk + Macula 3D regimen and in the Disk Raster regimen (Optopol Revo 60 OCT device (Optopol Technology, Poland). The depth of the lamina cribrosa (LC) and the thickness of the prelaminar layer of nerve fibers (tPLNF) were calculated.

Results. No significant differences were found between the LC depth in patients with different forms of glaucoma compared with the control group. LC depth averaged 426.9 ± 98.7 μm (p < 0.164) in patients with POAG, 416.9 ± 161.0 μm (p < 0.818) with NTG and 425.5 ± 88.04 μm, (p < 0.18) with PEG. The thinnest layer of prelaminar nerve fibers was found in patients with NTG (134,0 ± 91.4 μM), where the value was half as much as the control (p < 0.001). There were no differences in the tPNFL parameter in POAG (193.2 ± 114.6 μm) and PEG (190.7 ± 115.3 μm) but both were significantly lower as compared to the control group (p < 0.001, p < 0.002) respectively.

Conclusion. The study of LC parameters contributes to a better understanding of the pathogenesis of optic neuropathy in diverse forms of glaucoma. It opens up new opportunities in the differential diagnosis and prediction of the glaucoma course.

About the Authors

L. L. Arutyunyan
Russian Medical Academy of Continuous Professional Education, Department of Ophthalmology; East Sight Recovery Eye care center
Russian Federation

Lusine L. Arutyunyan — Dr. of Med. Sci., professor of chair of
ophthalmology, head of the diagnostic unit

2/1 Bldg. 1, Barrikadnaya St., Moscow, 125993; 10, Bldg. 1, Poliny Osipenko St., Moscow, 123007



Yu. S. Morozova
Russian Medical Academy of Continuous Professional Education, Department of Ophthalmology
Russian Federation

Yulia S. Morozova — PhD student, chair of ophthalmology

2/1 Bldg. 1, Barrikadnaya St., Moscow, 125993



S. Yu. Anisimova
East Sight Recovery Eye care center
Russian Federation

Svetlana Yu. Anisimova — Dr. of Med. Sci., professor, director

10, Bldg. 1, Poliny Osipenko St., Moscow, 123007



S. I. Anisimov
East Sight Recovery Eye care center; A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Sergey I. Anisimov — Dr. of Med. Sci., scientific director, professor of chair of ophthalmology

10, Bldg. 1, Poliny Osipenko St., Moscow, 123007; , 20, Bldg. 1, Delegatskaya St., Moscow, 127473



References

1. Quigley H.A., Broman A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006; 90: 262–7. doi: 10.1136/ bjo.2005.081224

2. Tham Y.C., Li X., Wong T.Y., et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014; 121: 2081–90. doi: 10.1016/j. ophtha.2014.05.013

3. Weinreb R.N., Aung T., Medeiros F.A. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014; 311 (18): 1901–11. doi: 10.1001/ jama.2014.3192

4. Egorov E.A., Erichev V.P., eds. National guidance of glaucoma. 3rd edition. Moscow: GEOTAR-Media; 2019 (in Russian). doi: 10.33029/9704-5442-8- GLA-2020-1-384

5. Kiseleva O.A., Iomdina E.N., Yakubova L.V., Khoziev D.D. Lamina cribrosa in glaucoma: biomechanical properties and possibilities of their clinical control. Russian ophthalmological journal. 2018; 11 (3): 76–83 (in Russian). doi: 10.21516/2072-0076-2018-11-3-76-83

6. Volkov V.V. Glaucoma with pseudonormal intraocular pressure. Guidelines for doctors. Moscow: Medicina; 2001 (in Russian).

7. Ha A., Kim T.J., Girard M.J.A., et al. Baseline lamina cribrosa curvature and subsequent visual field progression rate in primary open-angle glaucoma. Ophthalmology. 2018; 125 (12): 1898–906. doi: 10.1016/j.ophtha.2018.05.017

8. Seo J.H., Kim T.W., Weinreb R.N. Lamina cribrosa depth in healthy eyes. Invest. Ophthalmol. Vis. Sci. 2014; 55 (3): 1241–51. doi: 10.1167/iovs.13-12536

9. Park H.Y., Jeon S.H., Park C.K. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012; 119: 10–20. doi:10,1016 / j.ophtha.2011.07.033

10. Naranjo-Bonilla P., Gim nez-G mez R., R os-Jim nez D., et al. Enhanced depth OCT imaging of the lamina cribrosa for 24 hours. J. Ophthalmol. 2017; 18.10 (2): 306–9. doi: 10.18240 / ijo.2017.02.20

11. Quigley H., Arora K., Idrees S., et al. Biomechanical responses of lamina cribrosa to intraocular pressure change assessed by optical coherence tomography in glaucoma eyes. Invest. Ophthalmol. Vis. Sci. 2017; 58: 2566–77. doi:10.1167/ iovs.16-21321

12. Volkov V.V., Simakova I.L., Kulikov A.N., et al. New morphometric criteria in the study of the pathogenesis of normal pressure glaucoma. Vestnik oftal'mologii. 2020; 136 (2): 49–55 (in Russian.). doi:10.17116/oftalma202013602149

13. Barrancos C., Rebolleda G., Oblanca N., Cabarga C., Mu oz-Negrete F.J. Changes in lamina cribrosa and prelaminar tissue after deep sclerectomy. Eye (Lond). 2014; 28 (1): 58–65. doi: 10.1038/eye.2013.238

14. Li L., Bian A., Cheng G., Zhou Q. Posterior displacement of the lamina cribrosain normal-tension and high-tension glaucoma. Acta Ophthalmol. 2016: 94: e492–500. https://doi.org/10.1111/aos.13012

15. Iomdina E.N., Kiseleva O.A., Bessmertny A.M., et al. Biomechanics of the corneoscleral shell and hemodynamics of the glaucomatous eye: is there a connection? Russian ophthalmological journal. 2019; 12 (1): 10–7 (in Russian). doi: 10.21516/2072-0076- 2019-12-1-10-17

16. Arutyunyan L.L., Anisimova S.Yu., Morozova Yu.S., Anisimov S.I. Biometric and morphometric parameters of the lamina cribrosa in patients with different stages of primary open-angle glaucoma. Natsional’nyi zhurnal glaukoma. 2021; 20 (3): 11–9. doi: 10.25700/2078-4104-2021- 20-3-11-19

17. Kim M., Bojikian K.D., Slabaugh M.A., Ding L., Chen P.P. Lamina depth and thickness correlate with glaucoma severity. Indian J. Ophthalmol. 2016; 64 (5): 358–63. doi: 10.4103/0301-4738. 185594

18. Lee S.H., Kim T.W., Lee E.J., Girard M.J., Mari J.M. Diagnostic power of lamina cribrosa depth and curvature in glaucoma. Invest. Ophthalmol. Vis. Sci. 2017; 58 (2): 755–62. doi: 10.1167/iovs.16-20802


Review

For citations:


Arutyunyan L.L., Morozova Yu.S., Anisimova S.Yu., Anisimov S.I. Evaluation of morphometric parameters of the optic disc in patients with diverse clinical forms of openangle glaucoma. Russian Ophthalmological Journal. 2022;15(2 (Прил)):24-30. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-supplement-24-30

Views: 632


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)