The structure of human retinal vasculature and interstitium in the terminal stage of primary openangle glaucoma
https://doi.org/10.21516/2072-0076-2022-15-2-supplement-121-128
Abstract
Purpose: to study the structural organization of the vascular bed of human retina in the terminal stage of primary open-angle glaucoma (POAG).
Material and methods. We performed a comparative immunohistochemical analysis of the content of vessels in the retina of 13 eyes of patients in the terminal stage of POAG, enucleated for medical reasons, and 17 eyes with uveal melanoma, using the markers of blood vessels endothelium CD34. The ultrastructural organization of the interstitium and endothelial cells of retinal microvessels was studied by electron microscopy and morphometry.
Results. A significant increase in the volume density of the interstitium and a decrease in the volume density of CD34+-blood vessels in the retina of patients in the terminal stage of POAG, as compared with uveal melanoma, were revealed. An increased volume density of luminal and basal caveolae and the formation of transendothelial channels in the cytoplasm of endotheliocytes of retinal blood capillaries in the terminal stage of POAG were noted.
Conclusion. In the terminal stage of POAG, the interstitial spaces of the retina are increased and the volume density of blood vessels is dropping. The increased volume density of luminal and basal caveolae and the formation of transendothelial channels in the cytoplasm of blood capillary endotheliocytes indicate the growth of transcytosis and the permeability of the blood-retinal barrier.
About the Authors
N. P. BgatovaRussian Federation
Nataliya P. Bgatova — Dr. of Biol. Sci., professor, head of the laboratory of ultrastructural research
2, Timakov St., Novosibirsk, 630060
N. A. Obanina
Russian Federation
Natalia A. Obanina — junior researcher, laboratory of ultrastructural
research
2, Timakov St., Novosibirsk, 630060
A. V. Eremina
Russian Federation
Alena V. Eremina — Cand. of Med. Sci., research associate of the scientific department
10, Kolkhidskaya St., Novosibirsk, 630096
A. N. Trunov
Russian Federation
Aleksandr N. Trunov — Dr. of Med. Sci., professor, deputy director for science
10, Kolkhidskaya St., Novosibirsk, 630096
V. V. Chernykh
Russian Federation
Valeriy V. Chernykh — Dr. of Med. Sci., professor, director
10, Kolkhidskaya St., Novosibirsk, 630096
References
1. Kri aj D. What is glaucoma? In: Kolb H., Fernandez E., Nelson R., Jones B.W. eds. Webvision: The organization of the retina and visual system. Available at: https://webvision.med.utah.edu/book/part-xii-cell-biology-of-retinaldegenerations/what-is-glaucoma/ (Accessed May 30, 2019).
2. Jassim A.H., Inman D.M. Evidence of hypoxic glial cells in a model of ocular hypertension. Invest. Ophthalmol. Vis. Sci. 2019; 60 (1): 1–15. doi: 10.1167/ iovs.18-24977
3. Flammer J., Org l S., Costa V.P., et al. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002; 21 (4): 359–93. doi:10.1016/s1350- 9462(02)00008-3
4. Tezel G., Wax M.B. Increased production of tumor necrosis factor-alpha by glial cells exposed to simulated ischemia or elevated hydrostatic pressure induces apoptosis in cocultured retinal ganglion cells. J. Neurosci. 2000; 20 (23): 8693–700. doi:10.1523/JNEUROSCI.20-23-08693.2000
5. Wax M.B., Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp. Eye. Res. 2009; 88 (4): 825–30. doi:10.1016/j.exer.2009.02.005
6. Howell G.R., Soto I., Zhu X., et al. Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. J. Clin. Invest. 2012; 122 (4): 1246–61. doi:10.1172/JCI61135
7. Huang J., Zhao Q., Li M., et al. The effects of endothelium-specific CYP2J2 overexpression on the attenuation of retinal ganglion cell apoptosis in a glaucoma rat model. FASEB J. 2019; 33 (10): 11194–209. doi: 10.1096/fj.201900756R
8. Alyahya K., Chen C.T., Mangan B.G., et al. Microvessel loss, vascular damage and glutamate redistribution in the retinas of dogs with primary glaucoma. Vet. Ophthalmol. 2007; Suppl 1: 70–7. doi: 10.1111/j.1463-5224.2007.00562.x
9. Trost A., Motloch K., Bruckner D., et al. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp. Eye Res. 2015; 136: 59–71. doi:10.1016/j. exer.2015.05.010
10. Kurysheva N.I., Maslova E.V., Trubilina A.V., Ardzhevnishvili T.D., Fomin A.V. Macular blood flow in glaucoma. Vestnik oftal'mologii. 2017; 133 (2): 29–38 (in Russian)]. doi:10.17116/oftalma2017133229-37
11. Brusini P. OCT Glaucoma Staging System: a new method for retinal nerve fiber layer damage classification using spectral-domain OCT. Eye (Lond). 2018; 32 (1): 113–9. doi:10.1038/eye.2017.159
12. Usman A.B., Marchenko L.N., Kachan T.V., Dalidovich A.A. Angio-OCT in early diagnosis of primary open angle glaucoma. Oftal'mologiya. Vostochnaya Evropa. 2018; 8 (1): 19–26 (in Russian).
13. Almasieh M., Wilson A.M., Morquette B., et al. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 2012; 31 (2): 152–81. doi:10.1016/j.preteyeres.2011.11.002
14. Liu W.W., Margeta M.A. Imaging retinal ganglion cell death and dysfunction in glaucoma. Int. Ophthalmol. Clin. 2019; 59 (4): 41–54. doi:10.1097/ IIO.0000000000000285
15. Nesterov A.P. Primary open-angle glaucoma pathogenesis: which theory is more abcurate? Oftal'mologicheskie vedomosti. 2008; 1 (4): 63–7 (in Russian).
16. Saba A., Usmani A., Islam Q.U., Assad T. Unfolding the enigma of lamina cribrosa morphometry and its association with glaucoma. Pak. J. Med. Sci. 2019; 35 (6): 1730–5. doi:10.12669/pjms.35.6.568
17. Kang J.M., Tanna A.P. Glaucoma. Med. Clin. North Am. 2021; 105 (3): 493–510. doi:10.1016/j.mcna.2021.01.004
18. Semenova N.S., Gurova E.V., Sokolova E.N., Akopyan V.S. Optical coherence tomography - angiography to assess retinal vascular density in glaucoma. Sovremennye tekhnologii v oftal'mologii. 2017; 4: 177–9 (in Russian).
19. Rao H.L., Pradhan Z.S., Suh M.H., et al. Optical Coherence Tomography Angiography in glaucoma. J. Glaucoma. 2020; 29 (4): 312–21. doi:10.1097/ IJG.0000000000001463
20. Frank P.G., Woodman S.E., Park D.S., Lisanti M.P. Caveolin, caveolae, and endothelial cell function. Arterioscler. Thromb. Vasc. Biol. 2003; 23 (7): 1161–8. doi:10.1161/01.ATV.0000070546.16946.3A
21. Parton R.G., McMahon K.A., Wu Y. Caveolae: Formation, dynamics, and function. Curr. Opin. Cell Biol. 2020; 65: 8–16. doi:10.1016/j.ceb.2020.02.001
22. Simionescu M., Popov D., Sima A. Endothelial transcytosis in health and disease. Cell Tissue Res. 2009; 335 (1): 27–40. doi:10.1007/s00441-008-0688-3
23. Ayloo S., Gu C. Transcytosis at the blood-brain barrier. Curr. Opin. Neurobiol. 2019; 57: 32–38. doi:10.1016/j.conb.2018.12.014
24. Zhao Z., Nelson A.R., Betsholtz C., Zlokovic B.V. Establishment and dysfunction of the blood-brain barrier. Cell. 2015; 163: 1064–78. doi: 10.1016/j. cell.2015.10.067
25. Ben-Zvi A., Lacoste B., Kur E., et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014; 509: 507–11. doi: 10.1038/ nature13324
26. Chow B.W., Gu C. Gradual suppression of transcytosis governs functional bloodretinal barrier formation. Neuron. 2017; 93 (6): 1325–33.e3. doi:10.1016/j. neuron.2017.02.043
Review
For citations:
Bgatova N.P., Obanina N.A., Eremina A.V., Trunov A.N., Chernykh V.V. The structure of human retinal vasculature and interstitium in the terminal stage of primary openangle glaucoma. Russian Ophthalmological Journal. 2022;15(2 (Прил)):121-128. (In Russ.) https://doi.org/10.21516/2072-0076-2022-15-2-supplement-121-128