Modifying treatment of degenerative retinal diseases. Part 1. Adaptive and non-adaptive retinal plasticity
https://doi.org/10.21516/2072-0076-2023-16-2-160-165
Abstract
Retinal structural plasticity is manifested in multiple damages of the retina. In many cases, the response to these damages is identical at both the cellular and molecular levels, involves similar sets of cellular signals, and is associated with a change in the structure of the retina and remodeling of the neural connections. The review discusses the common and specific features of adaptive and non-adaptive retinal plasticity, which characterize glaucoma, age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and retinopathy of prematurity. Given the common features of neurodegeneration and retinal plasticity in brain and retinal diseases, similar therapeutic strategies can be used in many cases to preserve the structure connectivity and retinal function, which stop or slow down the clinical evolution of the disease by either suppressing primary events or enhancing compensatory and regenerative mechanisms in the nervous tissue. Part 2 of the review will present neuroplasticity-based modifying therapy methods for retinal degenerative diseases.
About the Authors
M. V. ZuevaRussian Federation
Marina V. Zueva, Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
N. V. Neroeva
Russian Federation
Natalia V. Neroeva, Cand. of Med. Sci., ophthalmologist, department of pathology of the retina and optic nerve,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
L. A. Katargina
Russian Federation
Lyudmila A. Katargina, Dr. of Med. Sci., professor, head of the department of eye pathology in children,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
A. N. Zhuravleva
Russian Federation
Anastasia N. Zhuravleva, Cand. of Med. Sci., researcher, glaucoma department,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
V. I. Kotelin
Russian Federation
Vladislav I. Kotelin, Cand. of Med. Sci., researcher, department of clinical physiology of vision named after S.V. Kravkov,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
I. V. Tsapenko
Russian Federation
Irina V. Tsapenko, Cand. of Biol. Sci., chief specialist of the department of clinical physiology of vision named after S.V. Kravkov,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
D. V. Fadeev
Russian Federation
Denis V. Fadeev, researcher, scientific experimental center,
14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062
References
1. Zhang X, Li S, Tang Y, Guo Y, Gao S. Intractable ocular diseases and treatment progress. AAPS PharmSciTech. 2020; 21 (6): 236. doi: 10.1208/s12249-020-01774-1
2. Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics. Design and Delivery of Drugs for Diseases of the Eye. J Med Chem. 2020; 63 (19): 10533–93. doi: 10.1021/acs.jmedchem.9b01033
3. Choudhary M, Malek G. Rethinking nuclear receptors as potential therapeutic targets for retinal diseases. J Biomol Screen. 2016; 21 (10): 1007–18. doi: 10.1177/1087057116659856
4. Gupta N, Yücel Y. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007; 18 (2): 110–4. doi: 10.1097/ICU.0b013e3280895aea
5. Lawlor M, Danesh-Meyer H, Levin LA, et al. Glaucoma and the brain: Transsynaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018; 63 (3): 296–306. doi: 10.1016/j.survophthal.2017.09.010
6. Nuzzi R, Dallorto L, Rolle T. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review. Front Neurosci. 2018; 12: 363. doi: 10.3389/fnins.2018.00363
7. Chan JW, Chan NC, Sadun AA. Glaucoma as Neurodegeneration in the Brain. Eye Brain. 2021; 13: 21–8. doi: 10.2147/EB.S293765
8. You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal degeneration in the brain during glaucoma. Front Aging Neurosci. 2021; 13: 643685. doi: 10.3389/fnagi.2021.643685
9. Whitson HE, Ansah D, Whitaker D, et al. Prevalence and Patterns of Comorbid Cognitive Impairment in Low Vision Rehabilitation for Macular Disease. Arch Gerontol Geriatr. 2010; 50 (2): 209–12. doi: 10.1016/j.archger.2009.03.010
10. Zhuang J, Madden DJ, Cunha P, et al. Cerebral white matter connectivity, cognition, and age-related macular degeneration. NeuroImage: Clinical. 2021; 30: 102594. doi: 10.1016/j.nicl.2021.102594
11. Zafar S, Sachdeva M, Frankfort BJ, Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr. Diabetes Rep. 2019; 19 (4): 17. doi: 10.1007/s11892-019-1134-5
12. Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent developments in diabetic retinal neurodegeneration: A literature review. J Diabetes Res. 2020; 2020: 5728674. doi: 10.1155/2020/5728674
13. Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes. 2020; 11 (10): 1120. doi: 10.3390/genes11101120
14. Menzler J, Zeck G. Network oscillations in rod-degenerated mouse retinas. J Neurosci. 2011; 31 (6): 2280–91. doi: 10.1523/JNEUROSCI.4238-10.2011
15. Goo YS, Ahn KN, Song YJ, et al. Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice. Korean J Physiol Pharmacol. 2011; 15 (6): 415–22. doi: 10.4196/kjpp.2011.15.6.415
16. Margolis DJ, Detwiler PB. Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa. J Ophthalmol. 2011; 2011: 507037. doi: 10.1155/2011/507037
17. Drager UC, Hubel DH. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol. 1978; 180 (1): 85–114. doi: 10.1002/cne.901800107
18. Rita Machado A, Carvalho Pereira A, Ferreira F, et al. Structure-function correlations in retinitis pigmentosa patients with partially preserved vision: a voxel-based morphometry study. Sci. Rep. 2017; 7 (1): 11411. doi: 10.1038/s41598-017-11317-7
19. Bhattacharyya A. The detrimental effects of progression of retinal degeneration in the visual cortex. Front. Cell. Neurosci. 2022; 16: 904175. doi: 10.3389/fncel.2022.904175
20. Serruyaa MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res. 2008; 192 (2): 149–65. doi: 10.1016/j.bbr.2008.04.007
21. Baroncelli L, Braschi C, Spolidoro M, et al. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010; 17 (7): 1092–103. doi: 10.1038/cdd.2009.193
22. Rosa AM, Silva MF, Ferreira S, Murta J, Castelo-Branco M. MPlasticity in the human visual cortex: an ophthalmology-based perspective. Biomed Res Int. 2013; 2013: 568354. doi: 10.1155/2013/568354
23. Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci. 2014; 8: 156. doi: 10.3389/fnsys.2014.00156
24. Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol. 2017; 298 (Pt B): 137–47. doi: 10.1016/j.expneurol.2017.10.001
25. O'Brien J, Bloomfield SA. Plasticity of retinal gap junctions: Roles in synaptic physiology and disease. Ann Rev Vis Sci. 2018; 4: 79–100. doi: 10.1146/annurevvision-091517-034133
26. Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014; 43: 17–75. doi: 10.1016/j.preteyeres.2014.07.001
27. Jones BW, Kondo M, Terasaki H, et al. Retinal remodeling. Jpn J Ophthalmol. 2012; 56 (4): 289–306. doi: 10.1007/s10384-012-0147-2
28. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 2002; 22 (1): 5492–504. doi: 10.1523/JNEUROSCI.22-13-05492.2002
29. Puthussery T, Taylor WR. Functional changes in inner retinal neurons in animal models of photoreceptor degeneration. Adv Exp Med Biol. 2010; 664: 525–32. doi: 10.1007/978-1-4419-1399-9_60
30. Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp Neurol. 2004; 469 (3): 351–9. doi: 10.1002/cne.11019
31. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci. 2013; 33 (29): 11949–59. doi: 10.1523/JNEUROSCI.1521-13.2013
32. Dunn FA, Della Santina L, Parker ED, Wong RO. Sensory experience shapes the development of the visual system's first synapse. Neuron. 2013; 80 (5): 1159–66. doi: 10.1016/j.neuron.2013.09.024
33. Lin Y, Jones B, Liu A, et al. Rapid glutamate receptor 2 trafficking during retinal degeneration. Mol. Neurodegener. 2012; 7: 7. doi: 10.1186/1750-1326-7-7
34. Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat. Neurosci. 2000; 3 (11): 1121–7. doi: 10.1038/80639
35. Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits. 2014; 8: 108. doi: https://doi.org/10.3389/fncir.2014.00108
36. Haverkamp S, Michalakis S, Claes E, et al. Synaptic plasticity in CNGA3 (-/-)mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci. 2006; 26 (19): 5248–55. doi: 10.1523/JNEUROSCI.4483-05.2006
37. Trenholm S, Awatramani GB. Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci. 2015; 9: 277. doi: 10.3389/fncel.2015.00277
38. Soto F, Ma X, Cecil JL, et al. Spontaneous activity promotes synapse formation in a cell-type- dependent manner in the developing retina. J Neurosci. 2012; 32 (16): 5426–39. doi: 10.1523/JNEUROSCI.0194-12.2012
39. Srivastava P, Sinha-Mahapatra SK, Ghosh A, Srivastava I, Dhingra NK. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse. PLoS One. 2015; 10 (4): e0123896. doi: 10.1371/journal.pone.0123896
40. Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature. 2009; 460 (7258): 1016–20. doi: 10.1038/nature08236
41. Sullivan RK, Woldemussie E, Pow DV. Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol. Vis. Sci. 2007; 48 (6): 2782–91. doi: 10.1167/iovs.06-1283
42. Beier C, Hovhannisyan A, Weiser S, et al. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision. J Neurosci. 2017; 37 (17): 4635–44. doi: 10.1523/JNEUROSCI.2570-16.2017
43. Bandello F, Sacconi R, Querques L, et al. Recent advances in the management of dry age-related macular degeneration: a review. F1000Res. 2017; 6: 245. doi: 10.12688/f1000research.10664.1
44. Sundstrom JM, Hernández C, Weber SR, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018; 59 (6): 2264–74. doi: 10.1167/iovs.17-23678
45. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998; 47 (3): 445–9. doi: 10.2337/diabetes.47.3.445
46. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000 Oct; 41 (11): 3561–8. PMID: 11006253.
47. Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature. 2010; 468 (7321): 232–43. doi: 10.1038/nature09613
48. Simó R, Hernández C. European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014; 25 (1): 23–33. doi: 10.1016/j.tem.2013.09.005
49. Castilho A, Ambrósio AF, Hartveit E, Veruki ML. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci. 2015; 35 (13): 5422–33. doi: 10.1523/JNEUROSCI.5285-14.2015
50. Coombs JL, Chalupa LM. Plasticity of retinal ganglion cells. In: M. Chalupa et al., eds. Cerebral plasticity: New Perspectives. The MIT Press. 2013. doi: 10.7551/mitpress/9780262015233.003.0003
51. Doozandeh A, Yazdani S Neuroprotection in glaucoma. J Ophthalmic Vis Res. 2016; 11 (2): 209–20. doi: 10.4103/2008-322X.183923
52. Foldvari M, Chen DW. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen Res. 2016; 11 (6): 875–7. doi: 10.4103/1673-5374.184448
53. Calkins DJ, Horner PJ. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012; 53 (5): 2482–4. doi: 10.1167/iovs.12-9483i
54. Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotection in glaucoma. Optom. Vis Sci. 2008; 85 (6): 417–24. doi: 10.1097/OPX.0b013e31817841f7
55. Liu M, Duggan J, Salt TE, Cordeiro MF. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res. 2011; 92 (4): 244–50. doi: 10.1016/j.exer.2011.01.014
56. Zueva M.V. The dynamics of the death of ganglion cells of the retina in glaucoma and its functional markers. Russian journal of glaucoma. 2016; 15 (1): 70–85 (In Russ.).
57. Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012; 32 (4): 354–8. doi: 10.1097/WNO.0b013e3182745600
58. Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012; 53 (7): 3847–57. doi: 10.1167/iovs.12-9712
59. Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis Res. 2011; 51 (2): 243–50. doi: 10.1016/j.visres.2010.08.003
60. Santina Della L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013; 33 (44): 17444–57. doi: 10.1523/JNEUROSCI.5461-12.2013
61. Park HY, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain. 2014; 7: 53. doi: 10.1186/s13041-014-0053-2
62. El-Danaf RN, Huberman AD. Characteristic Patterns of Dendritic Remodeling in Early-Stage Glaucoma: Evidence from Genetically Identified Retinal Ganglion Cell Types. J Neurosci. 2015. 35 (6): 2329–43. doi: 10.1523/JNEUROSCI.1419-14.2015
Review
For citations:
Zueva M.V., Neroeva N.V., Katargina L.A., Zhuravleva A.N., Kotelin V.I., Tsapenko I.V., Fadeev D.V. Modifying treatment of degenerative retinal diseases. Part 1. Adaptive and non-adaptive retinal plasticity. Russian Ophthalmological Journal. 2023;16(2):160-165. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-2-160-165