Preview

Russian Ophthalmological Journal

Advanced search

Modifying treatment of degenerative retinal diseases. Part 1. Adaptive and non-adaptive retinal plasticity

https://doi.org/10.21516/2072-0076-2023-16-2-160-165

Abstract

Retinal structural plasticity is manifested in multiple damages of the retina. In many cases, the response to these damages is identical at both the cellular and molecular levels, involves similar sets of cellular signals, and is associated with a change in the structure of the retina and remodeling of the neural connections. The review discusses the common and specific features of adaptive and non-adaptive retinal plasticity, which characterize glaucoma, age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and retinopathy of prematurity. Given the common features of neurodegeneration and retinal plasticity in brain and retinal diseases, similar therapeutic strategies can be used in many cases to preserve the structure connectivity and retinal function, which stop or slow down the clinical evolution of the disease by either suppressing primary events or enhancing compensatory and regenerative mechanisms in the nervous tissue. Part 2 of the review will present neuroplasticity-based modifying therapy methods for retinal degenerative diseases.

About the Authors

M. V. Zueva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Marina V. Zueva, Dr. of Biol. Sci., professor, head of the department of clinical physiology of vision named after S.V. Kravkov,

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



N. V. Neroeva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Natalia V. Neroeva, Cand. of Med. Sci., ophthalmologist, department of pathology of the retina and optic nerve, 

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



L. A. Katargina
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Lyudmila A. Katargina, Dr. of Med. Sci., professor, head of the department of eye pathology in children,

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



A. N. Zhuravleva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Anastasia N. Zhuravleva, Cand. of Med. Sci., researcher, glaucoma department, 

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



V. I. Kotelin
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Vladislav I. Kotelin, Cand. of Med. Sci., researcher, department of clinical physiology of vision named after S.V. Kravkov,

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



I. V. Tsapenko
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Irina V. Tsapenko, Cand. of Biol. Sci., chief specialist of the department of clinical physiology of vision named after S.V. Kravkov,

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



D. V. Fadeev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Denis V. Fadeev, researcher, scientific experimental center,

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062



References

1. Zhang X, Li S, Tang Y, Guo Y, Gao S. Intractable ocular diseases and treatment progress. AAPS PharmSciTech. 2020; 21 (6): 236. doi: 10.1208/s12249-020-01774-1

2. Cheng KJ, Hsieh CM, Nepali K, Liou JP. Ocular Disease Therapeutics. Design and Delivery of Drugs for Diseases of the Eye. J Med Chem. 2020; 63 (19): 10533–93. doi: 10.1021/acs.jmedchem.9b01033

3. Choudhary M, Malek G. Rethinking nuclear receptors as potential therapeutic targets for retinal diseases. J Biomol Screen. 2016; 21 (10): 1007–18. doi: 10.1177/1087057116659856

4. Gupta N, Yücel Y. Glaucoma as a neurodegenerative disease. Curr Opin Ophthalmol. 2007; 18 (2): 110–4. doi: 10.1097/ICU.0b013e3280895aea

5. Lawlor M, Danesh-Meyer H, Levin LA, et al. Glaucoma and the brain: Transsynaptic degeneration, structural change, and implications for neuroprotection. Surv Ophthalmol. 2018; 63 (3): 296–306. doi: 10.1016/j.survophthal.2017.09.010

6. Nuzzi R, Dallorto L, Rolle T. Changes of Visual Pathway and Brain Connectivity in Glaucoma: A Systematic Review. Front Neurosci. 2018; 12: 363. doi: 10.3389/fnins.2018.00363

7. Chan JW, Chan NC, Sadun AA. Glaucoma as Neurodegeneration in the Brain. Eye Brain. 2021; 13: 21–8. doi: 10.2147/EB.S293765

8. You M, Rong R, Zeng Z, Xia X, Ji D. Transneuronal degeneration in the brain during glaucoma. Front Aging Neurosci. 2021; 13: 643685. doi: 10.3389/fnagi.2021.643685

9. Whitson HE, Ansah D, Whitaker D, et al. Prevalence and Patterns of Comorbid Cognitive Impairment in Low Vision Rehabilitation for Macular Disease. Arch Gerontol Geriatr. 2010; 50 (2): 209–12. doi: 10.1016/j.archger.2009.03.010

10. Zhuang J, Madden DJ, Cunha P, et al. Cerebral white matter connectivity, cognition, and age-related macular degeneration. NeuroImage: Clinical. 2021; 30: 102594. doi: 10.1016/j.nicl.2021.102594

11. Zafar S, Sachdeva M, Frankfort BJ, Channa R. Retinal neurodegeneration as an early manifestation of diabetic eye disease and potential neuroprotective therapies. Curr. Diabetes Rep. 2019; 19 (4): 17. doi: 10.1007/s11892-019-1134-5

12. Pillar S, Moisseiev E, Sokolovska J, Grzybowski A. Recent developments in diabetic retinal neurodegeneration: A literature review. J Diabetes Res. 2020; 2020: 5728674. doi: 10.1155/2020/5728674

13. Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes. 2020; 11 (10): 1120. doi: 10.3390/genes11101120

14. Menzler J, Zeck G. Network oscillations in rod-degenerated mouse retinas. J Neurosci. 2011; 31 (6): 2280–91. doi: 10.1523/JNEUROSCI.4238-10.2011

15. Goo YS, Ahn KN, Song YJ, et al. Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice. Korean J Physiol Pharmacol. 2011; 15 (6): 415–22. doi: 10.4196/kjpp.2011.15.6.415

16. Margolis DJ, Detwiler PB. Cellular Origin of Spontaneous Ganglion Cell Spike Activity in Animal Models of Retinitis Pigmentosa. J Ophthalmol. 2011; 2011: 507037. doi: 10.1155/2011/507037

17. Drager UC, Hubel DH. Studies of visual function and its decay in mice with hereditary retinal degeneration. J Comp Neurol. 1978; 180 (1): 85–114. doi: 10.1002/cne.901800107

18. Rita Machado A, Carvalho Pereira A, Ferreira F, et al. Structure-function correlations in retinitis pigmentosa patients with partially preserved vision: a voxel-based morphometry study. Sci. Rep. 2017; 7 (1): 11411. doi: 10.1038/s41598-017-11317-7

19. Bhattacharyya A. The detrimental effects of progression of retinal degeneration in the visual cortex. Front. Cell. Neurosci. 2022; 16: 904175. doi: 10.3389/fncel.2022.904175

20. Serruyaa MD, Kahana MJ. Techniques and devices to restore cognition. Behav Brain Res. 2008; 192 (2): 149–65. doi: 10.1016/j.bbr.2008.04.007

21. Baroncelli L, Braschi C, Spolidoro M, et al. Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ. 2010; 17 (7): 1092–103. doi: 10.1038/cdd.2009.193

22. Rosa AM, Silva MF, Ferreira S, Murta J, Castelo-Branco M. MPlasticity in the human visual cortex: an ophthalmology-based perspective. Biomed Res Int. 2013; 2013: 568354. doi: 10.1155/2013/568354

23. Alwis DS, Rajan R. Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci. 2014; 8: 156. doi: 10.3389/fnsys.2014.00156

24. Francardo V, Schmitz Y, Sulzer D, Cenci MA. Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol. 2017; 298 (Pt B): 137–47. doi: 10.1016/j.expneurol.2017.10.001

25. O'Brien J, Bloomfield SA. Plasticity of retinal gap junctions: Roles in synaptic physiology and disease. Ann Rev Vis Sci. 2018; 4: 79–100. doi: 10.1146/annurevvision-091517-034133

26. Cuenca N, Fernández-Sánchez L, Campello L, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res. 2014; 43: 17–75. doi: 10.1016/j.preteyeres.2014.07.001

27. Jones BW, Kondo M, Terasaki H, et al. Retinal remodeling. Jpn J Ophthalmol. 2012; 56 (4): 289–306. doi: 10.1007/s10384-012-0147-2

28. Strettoi E, Porciatti V, Falsini B, Pignatelli V, Rossi C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 2002; 22 (1): 5492–504. doi: 10.1523/JNEUROSCI.22-13-05492.2002

29. Puthussery T, Taylor WR. Functional changes in inner retinal neurons in animal models of photoreceptor degeneration. Adv Exp Med Biol. 2010; 664: 525–32. doi: 10.1007/978-1-4419-1399-9_60

30. Pignatelli V, Cepko CL, Strettoi E. Inner retinal abnormalities in a mouse model of Leber’s congenital amaurosis. J Comp Neurol. 2004; 469 (3): 351–9. doi: 10.1002/cne.11019

31. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci. 2013; 33 (29): 11949–59. doi: 10.1523/JNEUROSCI.1521-13.2013

32. Dunn FA, Della Santina L, Parker ED, Wong RO. Sensory experience shapes the development of the visual system's first synapse. Neuron. 2013; 80 (5): 1159–66. doi: 10.1016/j.neuron.2013.09.024

33. Lin Y, Jones B, Liu A, et al. Rapid glutamate receptor 2 trafficking during retinal degeneration. Mol. Neurodegener. 2012; 7: 7. doi: 10.1186/1750-1326-7-7

34. Peng YW, Hao Y, Petters RM, Wong F. Ectopic synaptogenesis in the mammalian retina caused by rod photoreceptor-specific mutations. Nat. Neurosci. 2000; 3 (11): 1121–7. doi: 10.1038/80639

35. Haq W, Arango-Gonzalez B, Zrenner E, Euler T, Schubert T. Synaptic remodeling generates synchronous oscillations in the degenerated outer mouse retina. Front Neural Circuits. 2014; 8: 108. doi: https://doi.org/10.3389/fncir.2014.00108

36. Haverkamp S, Michalakis S, Claes E, et al. Synaptic plasticity in CNGA3 (-/-)mice: cone bipolar cells react on the missing cone input and form ectopic synapses with rods. J Neurosci. 2006; 26 (19): 5248–55. doi: 10.1523/JNEUROSCI.4483-05.2006

37. Trenholm S, Awatramani GB. Origins of spontaneous activity in the degenerating retina. Front Cell Neurosci. 2015; 9: 277. doi: 10.3389/fncel.2015.00277

38. Soto F, Ma X, Cecil JL, et al. Spontaneous activity promotes synapse formation in a cell-type- dependent manner in the developing retina. J Neurosci. 2012; 32 (16): 5426–39. doi: 10.1523/JNEUROSCI.0194-12.2012

39. Srivastava P, Sinha-Mahapatra SK, Ghosh A, Srivastava I, Dhingra NK. Differential alterations in the expression of neurotransmitter receptors in inner retina following loss of photoreceptors in rd1 mouse. PLoS One. 2015; 10 (4): e0123896. doi: 10.1371/journal.pone.0123896

40. Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature. 2009; 460 (7258): 1016–20. doi: 10.1038/nature08236

41. Sullivan RK, Woldemussie E, Pow DV. Dendritic and synaptic plasticity of neurons in the human age-related macular degeneration retina. Invest Ophthalmol. Vis. Sci. 2007; 48 (6): 2782–91. doi: 10.1167/iovs.06-1283

42. Beier C, Hovhannisyan A, Weiser S, et al. Deafferented Adult Rod Bipolar Cells Create New Synapses with Photoreceptors to Restore Vision. J Neurosci. 2017; 37 (17): 4635–44. doi: 10.1523/JNEUROSCI.2570-16.2017

43. Bandello F, Sacconi R, Querques L, et al. Recent advances in the management of dry age-related macular degeneration: a review. F1000Res. 2017; 6: 245. doi: 10.12688/f1000research.10664.1

44. Sundstrom JM, Hernández C, Weber SR, et al. Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases. Invest Ophthalmol Vis Sci. 2018; 59 (6): 2264–74. doi: 10.1167/iovs.17-23678

45. Mizutani M, Gerhardinger C, Lorenzi M. Muller cell changes in human diabetic retinopathy. Diabetes. 1998; 47 (3): 445–9. doi: 10.2337/diabetes.47.3.445

46. Barber AJ, Antonetti DA, Gardner TW. Altered expression of retinal occludin and glial fibrillary acidic protein in experimental diabetes. The Penn State Retina Research Group. Invest Ophthalmol Vis Sci. 2000 Oct; 41 (11): 3561–8. PMID: 11006253.

47. Attwell D, Buchan AM, Charpak S, et al. Glial and neuronal control of brain blood flow. Nature. 2010; 468 (7321): 232–43. doi: 10.1038/nature09613

48. Simó R, Hernández C. European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014; 25 (1): 23–33. doi: 10.1016/j.tem.2013.09.005

49. Castilho A, Ambrósio AF, Hartveit E, Veruki ML. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. J Neurosci. 2015; 35 (13): 5422–33. doi: 10.1523/JNEUROSCI.5285-14.2015

50. Coombs JL, Chalupa LM. Plasticity of retinal ganglion cells. In: M. Chalupa et al., eds. Cerebral plasticity: New Perspectives. The MIT Press. 2013. doi: 10.7551/mitpress/9780262015233.003.0003

51. Doozandeh A, Yazdani S Neuroprotection in glaucoma. J Ophthalmic Vis Res. 2016; 11 (2): 209–20. doi: 10.4103/2008-322X.183923

52. Foldvari M, Chen DW. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy. Neural Regen Res. 2016; 11 (6): 875–7. doi: 10.4103/1673-5374.184448

53. Calkins DJ, Horner PJ. The cell and molecular biology of glaucoma: axonopathy and the brain. Invest Ophthalmol Vis Sci. 2012; 53 (5): 2482–4. doi: 10.1167/iovs.12-9483i

54. Lebrun-Julien F, Di Polo A. Molecular and cell-based approaches for neuroprotection in glaucoma. Optom. Vis Sci. 2008; 85 (6): 417–24. doi: 10.1097/OPX.0b013e31817841f7

55. Liu M, Duggan J, Salt TE, Cordeiro MF. Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp Eye Res. 2011; 92 (4): 244–50. doi: 10.1016/j.exer.2011.01.014

56. Zueva M.V. The dynamics of the death of ganglion cells of the retina in glaucoma and its functional markers. Russian journal of glaucoma. 2016; 15 (1): 70–85 (In Russ.).

57. Porciatti V, Ventura LM. Retinal ganglion cell functional plasticity and optic neuropathy: a comprehensive model. J Neuroophthalmol. 2012; 32 (4): 354–8. doi: 10.1097/WNO.0b013e3182745600

58. Kalesnykas G, Oglesby EN, Zack DJ, et al. Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest Ophthalmol Vis Sci. 2012; 53 (7): 3847–57. doi: 10.1167/iovs.12-9712

59. Ly T, Gupta N, Weinreb RN, Kaufman PL, Yücel YH. Dendrite plasticity in the lateral geniculate nucleus in primate glaucoma. Vis Res. 2011; 51 (2): 243–50. doi: 10.1016/j.visres.2010.08.003

60. Santina Della L, Inman DM, Lupien CB, Horner PJ, Wong RO. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci. 2013; 33 (44): 17444–57. doi: 10.1523/JNEUROSCI.5461-12.2013

61. Park HY, Kim JH, Park CK. Alterations of the synapse of the inner retinal layers after chronic intraocular pressure elevation in glaucoma animal model. Mol Brain. 2014; 7: 53. doi: 10.1186/s13041-014-0053-2

62. El-Danaf RN, Huberman AD. Characteristic Patterns of Dendritic Remodeling in Early-Stage Glaucoma: Evidence from Genetically Identified Retinal Ganglion Cell Types. J Neurosci. 2015. 35 (6): 2329–43. doi: 10.1523/JNEUROSCI.1419-14.2015


Review

For citations:


Zueva M.V., Neroeva N.V., Katargina L.A., Zhuravleva A.N., Kotelin V.I., Tsapenko I.V., Fadeev D.V. Modifying treatment of degenerative retinal diseases. Part 1. Adaptive and non-adaptive retinal plasticity. Russian Ophthalmological Journal. 2023;16(2):160-165. (In Russ.) https://doi.org/10.21516/2072-0076-2023-16-2-160-165

Views: 424


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)