Микробиота — новый фактор в механизме развития глаукомы?
https://doi.org/10.21516/2072-0076-2024-17-2-148-153
Аннотация
На сегодняшний день глаукома рассматривается как многофакторное нейродегенеративное заболевание, в которое вовлечен ряд механизмов воздействия на различные типы клеток в организме человека. Известно, что повышенное внутриглазное давление (ВГД) является не единственным фактором риска апоптоза ганглиозных клеток и глаукоматозной оптической нейропатии, а может быть связано с другими факторами, включая сосудистые, метаболические, нейротрофические, иммунные, воспалительные и др. Однако в настоящее время лечение во многом остается симптоматическим, направленным почти исключительно на снижение ВГД. Микробиотический дисбиоз — новая развивающаяся область исследований патогенеза глаукомного поражения, этот механизм может быть важным фактором его развития. Есть основания полагать, что стратегии лечения с прицелом на коррекцию нарушений микробиоты будут способствовать повышению эффективности лечения глаукомы.
Об авторах
О. И. ОренбуркинаРоссия
Ольга Ивановна Оренбуркина - д-р мед. наук, директор
ул. Рихарда Зорге, д. 67, корп. 1, Уфа, 450075
А. Э. Бабушкин
Россия
Александр Эдуардович Бабушкин - д-р мед. наук, заведующий отделом организации научных исследований и разработок
ул. Пушкина, д. 90, Уфа, 450008
С. М. Шамсутдинов
Россия
Салават Масгутович Шамсутдинов - врач-офтальмолог
ул. Рихарда Зорге, д. 67, корп. 1, Уфа, 450075
Список литературы
1. Jonas JB, Aung T, Bourne RR. Glaucoma. Lancet. 2017 Nov 11; 390 (10108): 2183–93. doi: 10.1016/S0140-6736(17)31469-1
2. Alqawlaq S, Flanagan JG, Sivak JM. All roads lead to glaucoma: induced retinal injury cascades contribute to a common neurodegenerative outcome. Exp Eye Res. 2019 Jun; 183: 88–97. doi: 10.1016/j.exer.2018.11.005
3. Dada T, Verma S, Gagrani M, et al. Ocular and systemic factors associated with glaucoma. J Curr Glaucoma Pract. 2022 Sep-Dec; 16 (3): 179–91. doi: 10.5005/jp-journals-10078-1383
4. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014 Mar 27; 157 (1): 121–41. doi: 10.1016/j.cell.2014.03.011
5. Khan R, Petersen FC, Shekhar S. Commensal bacteria: an emerging player in defense against respiratory pathogens. Front Immunol. 2019 May 31; 10: 1203. doi: 10.3389/fimmu.2019.01203
6. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016 Jan 28; 164 (3): 337–40. doi:10.1016/j.cell.2016.01.013
7. Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metab. 2019 Aug; 30 (8): 479–90. doi: 10.1016/j.tem.2019.04.001
8. Shivaji S. Connect between gut microbiome and diseases of the human eye. J Biosci. 2019 Oct; 44 (5): 110. PMID: 31719219
9. Li N, Ma WT, Pang M, Fan QL, Hua JL. The commensal microbiota and viral infection: a comprehensive review. Front Immunol. 2019 Jul 4; 10: 1551. doi: 10.3389/fimmu.2019.01551
10. Robles Alonso V, Guarner F. Linking the gut microbiota to human health. Br J Nutr. 2013 Jan; 109 (2): 21–6. doi: 10.1017/S0007114512005235
11. Tsunoda I. Lymphatic system and gut microbiota affect immunopathology of neuroinflammatory diseases, including multiple sclerosis, neuromyelitis optica and Alzheimer’s disease. Clin Exp Neuroimmunol. 2017 Aug; 8 (3): 177–9. doi: 10.1111/cen3.12405
12. Gill T, Asquith M, Brooks SR, Rosenbaum JT, Colbert RA. Effects of HLA-B27 on gut microbiota in experimental spondyloarthritis implicate an ecological model of dysbiosis. Arthritis Rheum. 2018 Apr; 70 (4): 555–65. doi: 10.1002/art.40405
13. Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis. 2018 Apr; 271: 203–13. doi: 10.1016/j.atherosclerosis.2018.02.036
14. Wang X, Liang Z, Wang S, et al. Role of gut microbiota in multiple sclerosis and potential therapeutic implications. Curr Neuropharmacol. 2021; 20 (7): 1413–26. doi: 10.2174/1570159X19666210629145351
15. Pavel FM, Vesa CM, Gheorghe G, et al. Highlighting the relevance of gut microbiota manipulation in inflammatory bowel disease. Diagnostics (Basel). 2021 Îct 15; 11 (6): 1090. doi:10.3390/diagnostics11061090
16. Susmitha G, Kumar R. Role of microbial dysbiosis in the pathogenesis of Alzheimer’s disease. Neuropharmacology. 2023May 15; 229: 109478. doi: 10.1016/j.neuropharm.2023.109478
17. Kugadas A, Wright Q, Geddes-McAlister J, Gadjeva M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Invest Ophthalmol Vis Sci. 2017 Sep 1; 58 (11): 4593–600. doi: 10.1167/iovs.17-22119
18. Wang C, Zaheer M, Bian F, et al. Sjögren-like lacrimal keratoconjunctivitis in germ-free mice. Int J Mol Sci. 2018 Feb 13; 19 (2): 565. doi: 10.3390/ijms19020565
19. Kassam F, Gurry T, Aldarmaki A, et al. The impact of the gut microbiome in developing uveitis among inflammatory bowel disease patients: a casecontrol study. Gastroenterology. 2018 May 15; 154: S-415. doi: 10.1016/S0016-5085(18)31664-0
20. Floyd JL, Grant MB. The gut-eye Axis: lessons learned from murine models. Ophthalmol Ther. 2020 Sep; 9 (3): 499–513. doi: 10.1007/s40123-020-00278-2
21. Fu X, Chen Y, Chen D. The role of gut microbiome in autoimmune uveitis. Ophthalmic Res. 2021; 64 (2): 168–77. doi: 10.1159/000510212
22. Chakravarthy SK, Jayasudha R, Ranjith K, et al. Alterations in the gut bacterial microbiome in fungal Keratitis patients. PLoS One. 2018 Jun 22; 13 (6). e0199640
23. Rosenbaum JT, Asquith M. The microbiome and HLA-B27-associated acute anterior uveitis. Nat Rev Rheumatol. 2018 Dec; 14 (12): 704–13. doi: 10.1038/s41584-018-0097-2
24. Huang Y, Wang Z, Ma H, et al. Dysbiosis and implication of the gut microbiota in diabetic retinopathy. Front Cell Infect Microbiol. 2021 Mar 19; 11: 646348. doi: 10.3389/fcimb.2021.646348
25. Zinkernagel MS, Zysset-Burri DC, Keller I, et al. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci Rep. 2017 Jan 17; 7: 40826. doi: 10.1038/srep40826
26. Deng Y, Ge X, Li Y, et al. Identification of an intraocular microbiota. Cell Discovery. 2021 Mar 9; 7 (1): 13. doi: 10.1038/s41421-021-00245-6
27. Chen J, Chen DF, Cho KS. The role of gut microbiota in glaucoma progression and other retinal diseases. Am J Pathol. 2023 Nov; 193 (11): 1662–8. doi: 10.1016/j.ajpath.2023.06.015
28. Huang L, Hong Y, Fu X, et al. The role of the microbiota in glaucoma. Mol Aspects Med. 2023 Oct 20; 94: 101221. doi: 10.1016/j.mam.2023.101221
29. Bringer MA, Gabrielle PH, Bron AM, Creuzot-Garcher C, Acar N. The gut microbiota in retinal diseases. Exp Eye Res. 2022 Jan; 214: 108867. doi: 10.1016/j.exer.2021.108867
30. Donabedian P, Dawson E, Li Q, Chen J. Gut microbes and eye disease. Ophthalmic Res. 2022; 65 (3): 245–53. doi: 10.1159/000519457
31. Pezzino S, Sofia M, Greco LP, et al. Microbiome dysbiosis: A pathological mechanism at the intersection of obesity and glaucoma. Int J Mol Sci. 2023; 24 (2): 1166. doi:10.3390/ijms24021166
32. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multikingdom intermediates. Nat Rev Microbiol. 2021 Feb; 19 (2): 77–94. doi: 10.1038/s41579-020-0438-4
33. Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy aging. Nature Reviews Gastroenterology & Hepatology. 2022 Sep; 19 (9): 565–84. doi: 10.1038/s41575-022-00605-x
34. Chen WD, Lai LJ, Lee KL, et al. Is obesity a risk or protective factor for open-angle glaucoma in adults? A two-database, Asian, matched-cohort study. J Clin Med. 2021 Sep 6; 10 (17). doi: 10.3390/jcm10174021
35. Marshall H, Berry EC, Torres SD, et al. Association between body mass index and primary open angle glaucoma in three cohorts. Am J Ophthalmol. 2023 Jan; 245: 126–33. doi:10.1016/j.ajo.2022.08.006
36. Rong SS, Yu X. Phenotypic and genetic links between body fat measurements and primary open-angle glaucoma. Int J Mol Sci. 2023 Feb 15; 24 (4): 536. doi.org/10.3390/ijms24043925
37. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec 21; 444 (7122): 1027–31. doi: 10.1038/nature05414
38. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006 Dec 21; 444 (7122): 1022–3. doi: 10.1038/4441022a
39. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010 Dec; 59 (12): 3049–57. doi: 10.2337/db10-0253
40. Shin DY, Jung KI, Park HYL, Park CK. The effect of anxiety and depression on progression of glaucoma. Sci Rep. 2021Jan 19; 11 (1): 1769. doi: 10.1038/s41598-021-81512-0
41. Berchuck S, Jammal A, Mukherjee S, Somers T, Medeiros FA. Impact of anxiety and depression on progression to glaucoma among glaucoma suspects. Br J Ophthalmol. 2021 Sep; 105 (9): 1244–9. doi: 10.1136/bjophthalmol-2020-316617
42. Simpson CA, Diaz-Arteche C, Eliby D, et al. The gut microbiota in anxiety and depression - a systematic review. Clin Psychol Rev. 2021 Feb; 83:101943. doi: 10.1016/j.cpr.2021.101943
43. Ahn IS, Lang JM, Olson CA, et al. Host genetic background and gut microbiota contribute to differential metabolic responses to fructose consumption in mice. J Nutr. 2020 Oct 12; 150 (10): 2716–28. doi: 10.1093/jn/nxaa239
44. Zhang Y, Zhou X, Lu Y. Gut microbiota and derived metabolomic profiling in glaucoma with progressive neurodegeneration. Front Cell Infect Microbiol. 2022 Aug; 12: Article 968992. doi.org/10.3389/fcimb.2022.968992
45. Chang CJ, Somohano K, Zemsky C, et al. Topical glaucoma therapy is associated with alterations of the ocular surface microbiome. Invest Ophthalmol Vis Sci. 2022 Aug 2; 63 (9): 32. doi: 10.1167/iovs.63.9.32
46. Priluck A, Ramulu P, Dosto N, Quigley H, Abraham A. Validation of 16S rRNA gene sequencing of the periocular microbiome and lack of alteration by topical eyedrops. Transl Vis Sci Technol. 2023 Feb 1; 1 2(2): 32. doi:10.1167/tvst.12.2.32
47. Shin JH, Lee JW, Lim SH, et al. The microbiomes of the eyelid and buccal area of patients with uveitic glaucoma. BMC Ophthalmol. 2022 Apr 14; 22 (1): 170. doi: 10.1186/s12886-022-02395-x
48. Zavos C, Kountouras J, Sakkias G, et al. Histological presence of Helicobacter pylori bacteria in the trabeculum and iris of patients with primary open-angle glaucoma. Ophthalmic Res. 2012; 47 (3): 150–6. doi: 10.1159/000330053
49. Jackson MA, Verdi S, Maxan ME, et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat Commun. 2018 Jul 9; 9 (1): 2655. doi: 10.1038/s41467-018-05184-7
50. Gong H, Zhang S, Li Q, et al. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp Eye Res. 2020 Feb; 191: 107921. doi:10.1016/j.exer.2020.107921
51. Chen S, Wang Y, Liu Y, et al. Dysbiosis of gut microbiome contributes to glaucoma pathogenesis. MedComm — Future Med. 2022 Dec; 1 (2): 1–17. doi: 10.1002/mef2.28
52. Rowan S, Taylor A. The role of microbiota in retinal disease. Adv Exp Med Biol. 2018; 1074: 429–35. doi: 10.1007/978-3-319-75402-4_53
53. Arjunan P, Swaminathan R. Do oral pathogens inhabit the eye and play a role in ocular diseases? J Clin Med. 2022 May 23; 11 (10): 2938. doi: 10.3390/jcm11102938
54. Mosaddad SA, Mahootchi P, Safari S, Rahimi H, Aghili SS. Interactions between systemic diseases and oral microbiota shifts in the aging community: A narrative review. J Basic Microbiol. 2023 Aug; 63 (8): 831–54. doi:10.1002/jobm.202300141
55. Astafurov K, Elhawy E, Ren L. et al. Danias Oral microbiome link to neurodegeneration in glaucoma. PLoS One. 2014 Sep 2; 9 (9). e104416. doi: 10.1371/journal.pone.0104416
56. Polla D, Astafurov K, Hawy E, et al. A pilot study to evaluate the oral microbiome and dental health in primary open-angle glaucoma. J Glaucoma. 2017 Apr; 26 (4): 320–7. doi:10.1097/IJG.0000000000000465
57. Yoon BW, Lim SH, Shin JH, et al. Analysis of oral microbiome in glaucoma patients using machine learning prediction models. J Oral Microbiol. 2021 Aug 6; 13 (1): 1962125. doi: 10.1080/20002297.2021.1962125
58. Pasquale LR, Hyman L, Wiggs JL, et al. Prospective study of oral health and risk of primary open-angle glaucoma in men: Data from the Health Professionals Follow-up Study. Ophthalmology. 2016 Nov; 123 (11): 2318–27. doi:10.1016/j.ophtha.2016.07.014
59. Sun KT, Shen TC, Chen SC, et al. Periodontitis and the subsequent risk of glaucoma: results from the real-world practice. Sci Rep. 2020 Oct 16; 10 (1): 17568. doi: 10.1038/s41598-020-74589-6
60. Doulberis M, Polyzos SA, Papaefthymiou A, et al. Comments to the Editor concerning the paper entitled “The microbiome and ophthalmic disease” by Baim et al. Exp. Biol. Med. (Maywood)/ 2019 Apr; 244 (6): 430–2. doi: 10.1177/1535370218824340
61. Kountouras J, Mylopoulos N, Boura P, et al. Relationship between Helicobacter pylori infection and glaucoma. Ophthalmology. 2001 Mar; 108 (3): 599–604. doi: 10.1016/s0161-6420(00)00598-4
62. Kurtz S, Regenbogen M, Goldiner I, Horowitz N, Moshkowitz M. No association between Helicobacter pylori infection or CagA-bearing strains and glaucoma. J Glaucoma. 2008 Apr-May; 17 (3): 223–6. doi: 10.1097/IJG.0b013e31815a34ac
63. Noche CD, Njajou O, Etoa FX. No association between CagA- and VacApositive strains of Helicobacter pylori and primary open-angle glaucoma: a case-control study. Ophthalmol Eye Dis. 2016 Feb 17; 8: 1–4. doi:10.4137/OED.S35895
64. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multikingdom intermediates. Nat Rev Microbiol. 2021 Feb; 19 (2): 77–94. doi: 10.1038/s41579-020-0438-4
65. Skrzypecki J, Żera T, Ufnal M. Butyrate, a gut bacterial metabolite, lowers intraocular pressure in normotensive but not in hypertensive rats. J Glaucoma. 2018 Sep; 27 (9): 823–7. doi: 10.1097/IJG.0000000000001025
66. Skrzypecki J, Izdebska J, Kamińska A, et al. Glaucoma patients have an increased level of trimethylamine, a toxic product of gut bacteria, in the aqueous humor: a pilot study. Int Ophthalmol. 2021 Jan; 41 (1): 341–7. doi: 10.1007/s10792-020-01587-y
67. Wang Y, Hou XW, Liang G, Pan CW. Metabolomics in glaucoma: a systematic review. Invest. Ophthalmol. Vis. Sci. 2021 May 3; 62 (6): 9. doi: 10.1167/iovs.62.2.9
68. Tang Y, Shah S, Cho KS, Sun X, Chen DF. Metabolomics in primary open angle glaucoma: a systematic review and meta-analysis. Front Neurosci. 2022 May 12; 16: 835736. doi:10.3389/fnins.2022.835736
69. Leruez S, Marill A, Bresson T, et al. A metabolomics profiling of glaucoma points to mitochondrial dysfunction, senescence, and polyamines deficiency. Invest Ophthalmol Vis Sci. 2018 Sep 4; 59 (11): 4355–61. doi: 10.1167/iovs.18-24938
70. Buisset A, Gohier P, Leruez S, et al. Metabolomic profiling of aqueous humor in glaucoma points to taurine and spermine deficiency: findings from the eye-D study. J Proteome Res. 2019 Mar 1; 18 (3): 1307–15. doi: 10.1021/acs.jproteome.8b00915
71. Rong S, Li Y, Guan Y, et al. Long-chain unsaturated fatty acids as possible important metabolites for primary angle-closure glaucoma based on targeted metabolomic analysis. Biomed Chromatogr. 2017 Sep; 31 (9). doi: 10.1002/bmc.3963
72. Gong H, Zeng R, Li Q, et al. The profile of gut microbiota and central carbon-related metabolites in primary angle-closure glaucoma patients. Int Ophthalmol. 2022 Jun; 42 (6): 1927–38. doi: 10.1007/s10792-021-02190-5
73. Arjunan P. Eye on the enigmatic link: dysbiotic oral pathogens in ocular diseases, the flip side. Int Rev Immunol. 2021; 40 (6): 409–32. doi: 10.1080/08830185.2020.1845330
74. Chen S, Wang N, Xiong S, Xia X. The correlation between primary openangle glaucoma (POAG) and gut microbiota: a pilot study towards predictive, preventive, and personalized medicine. EPMA J. 2023; 14 (3): 539–52. doi: 10.1007/s13167-023-00336-2
75. Avni O, Koren O. Molecular (Me)micry? Cell Host Microbe. 2018 May 9; 23 (5): 576–8. doi: 10.1016/j.chom.2018.04.012
76. Rojas M, Restrepo-Jimenez P, Monsalve DM, et al. Molecular mimicry and autoimmunity. J Autoimmun. 2018 Dec; 95: 100–23. doi: 10.1016/j.jaut.2018.10.012
77. Wildner G, Diedrichs-Möhring M. Molecular mimicry and uveitis. Front Immunol. 2020 Oct 29; 11: 580636. doi: 10.3389/fimmu.2020.580636
78. Geyer O., Levo Y. Glaucoma is an autoimmune disease. Autoimmun Rev. 2020 Jun; 19 (6): 102535. doi: 10.1016/j.autrev.2020.102535
79. Chen H, Cho KS, Vu THK, et al. Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat Commun. 2018; 9: 3209. doi. 10.1038/s41467-018-05681-9
80. Jඳnemann A, Rejdak R, Hohberger B. Significance of homocysteine in glaucoma. Klin Monbl Augenheilkd. 2018 Feb; 235 (2): 163–74. doi: 10.1055/s-0044-101621
81. Kountouras J, Doulberis M, Papaefthymiou A, et al. Controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegeneration. Medicina (Kaunas). 2023 Mar 4; 59 (3): 504. doi: 10.3390/medicina59030504
82. Campagnoli LIM, Varesi A, Barbieri A, Marchesi N, Pascale A. Targeting the gut-eye Axis: an emerging strategy to face ocular diseases. Int J Mol Sci. 2023 Aug 28; 24 (17): 13338. doi: 10.3390/ijms241713338
Рецензия
Для цитирования:
Оренбуркина О.И., Бабушкин А.Э., Шамсутдинов С.М. Микробиота — новый фактор в механизме развития глаукомы? Российский офтальмологический журнал. 2024;17(2):148-153. https://doi.org/10.21516/2072-0076-2024-17-2-148-153
For citation:
Orenburkina O.I., Babushkin A.E., Shamsutdinov S.M. Is microbiota a factor in the mechanism of glaucoma development? Russian Ophthalmological Journal. 2024;17(2):148-153. (In Russ.) https://doi.org/10.21516/2072-0076-2024-17-2-148-153