ОКТ-АНГИОГРАФИЯ И ЕЕ РОЛЬ В ИССЛЕДОВАНИИ РЕТИНАЛЬНОЙ МИКРОЦИРКУЛЯЦИИ ПРИ ГЛАУКОМЕ (ЧАСТЬ ВТОРАЯ)
https://doi.org/10.21516/2072-0076-2018-11-3-95-100
Аннотация
Список литературы
1. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7): 1322-32. doi.org/ 10.1016/j.ophtha.2014.01.021
2. Liu L., Jia Y., Takusagawa H.L. et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9): 1045-52. doi.org/10.1001/jamaophthalmol.2015.2225
3. Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253(9): 1557-64. doi.org/10.1007/s00417-015-3095-y
4. Lévêque P.M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016; 2016: 6956717. doi.org/10.1155/2016/6956717
5. Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б. Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14(2): 20-32. Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. Role of OCT with angiography function in the early diagnostics and monitoring of glaucoma. Natsional’ny zhurnal glaucoma. 2016; 14(2): 20-32. (In Russian).
6. Hollo G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS ONE. 2017. 12(2): e0171541. doi:10.1371/journal.pone.0171541
7. Yarmohammadi A., Zangwill L.M., Diniz-Filho A. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis Sci. 2016; 57(9): 451-9. doi.org/10.1167/iovs.15-18944
8. Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 101(9): 1261-8. doi: 10.1136/bjophthalmol-2016-309642
9. Akil H., Huang A.S., Francis B.A., Sadda S.R., Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017; 12(2): e0170476. doi:10.1371/journal.pone.0170476
10. Rao H.L., Pradhan Z.S., Weinreb R.N. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2016; Nov. 29. pii: bjophthalmol-2016-309377. doi.org/10.1136/bjophthalmol-2016-309377
11. Suh M.H., Zangwill L.M., Manalastas P.I. et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123(11): 2309-2317. doi.org/10.1016/j.ophtha.2016.07.023
12. Rao H.L., Pradhan Z.S., Weinreb RN. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016; 171: 75-83. doi.org/10.1016/j.ajo.2016.08.030
13. Kurysheva N.I. Macula in glaucoma: vascularity evaluated by OCT angiography. Res. J. Pharmaceutical, Biological and Chemical Sci. 2016; 7(5): 651-62.
14. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73. doi.org/10.1016/j.preteyeres.2004.06.001
15. Shoji T., Zangwill L.M., Akagi T., et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017; 182: 107-117. doi: 10.1016/j.ajo.2017.07.011
16. Scripsema N.K., Garcia P.M., Bavier R.D., e al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 611-20. doi.org/10.1167/iovs.15-18945
17. Bojikian K.D., Chen C.-L., Wen J.C, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016; 11(5): e0154691. doi.org/ 10.1371/journal.pone.0154691
18. Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252-e266. doi.org/ 10.1111/aos.12298
19. Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121(3): 750-8. doi.org/10.1016/j.ophtha.2013.10.022
20. Falsini B., Anselmi G.M., Marangoni D., et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2011; 52(2): 1064-9. doi.org/10.1167/iovs.10-5964
21. Zeitz O., Galambos P., Wagenfeld L., et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br. J. Ophthalmol. 2006; 90(10): 1245-8. doi.org/10.1136/bjo.2006.093633
22. Zheng Y., Cheung N., Aung T., et al. Relationship of retinal vascular caliber with retinal nerve fiber layer thickness: the Singapore Malay Eye Study. Invest. Ophthalmol. Vis. Sci. 2009; 50(9): 4091-6. doi.org/10.1167/iovs.09-3444
23. Cheung N., Huynh S., Wang J.J., et al. Relationships of retinal vessel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children. Invest. Ophthalmol. Vis. Sci. 2008; 49(6): 2403-8. doi.org/10.1167/iovs.07-1313
24. Yu J., Gu R., Zong Y., et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 204-10. doi.org/10.1167/iovs.15-18630
25. Chui T.Y.P., Zhong Z., Song H., Burns S.A. Foveal avascular zone and its relationship to foveal pit shape. Optometry Vision Sci. 2012; 89(5): 602-10.
26. Tick S., Rossant F., Ghorbel I., et al. Foveal shape and structure in a normal population. Invest Ophthalmol. Vis. Sci. 2011; 52(8): 5105-10. doi.org/10.1167/iovs.10-7005
27. Tham Y.C., Cheng C.Y., Zheng Y., et al. Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes. Invest Ophthalmol Vis Sci. 2013; 54(12): 7309-16. doi.org/10.1167/iovs.13-12796
28. Yu P.K., Cringle S.J., Yu D. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014; 129: 83-92. doi.org/10.1016/j.exer.2014.10.020
29. Lee E.J., Lee K.M., Lee S.H., Kim T.-W. OCT-angiography of the peripapillary retina in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(14): 6265-70. doi.org/10.1167/ iovs.16-20287
Рецензия
Для цитирования:
Курышева Н.И. ОКТ-АНГИОГРАФИЯ И ЕЕ РОЛЬ В ИССЛЕДОВАНИИ РЕТИНАЛЬНОЙ МИКРОЦИРКУЛЯЦИИ ПРИ ГЛАУКОМЕ (ЧАСТЬ ВТОРАЯ). Российский офтальмологический журнал. 2018;11(3):95-100. https://doi.org/10.21516/2072-0076-2018-11-3-95-100
For citation:
Kurysheva N.I. OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART TWO). Russian Ophthalmological Journal. 2018;11(3):95-100. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-3-95-100