Preview

Russian Ophthalmological Journal

Advanced search

OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART TWO)

https://doi.org/10.21516/2072-0076-2018-11-3-95-100

Abstract

A new diagnostic method of ocular microcirculatory bloodstream - optical coherence tomography angiography (OCTA) has helped obtain new information on the anatomy and physiology of microcirculatory bloodstream of the retina and the optic disc. The review provides literary data on the reduction in peripapillary and macular blood flow in various glaucoma stages. These changes are shown to correlate with structural and functional disorders. It is emphasized that OCTA is a prospective method for early detection of glaucoma and for glaucoma monitoring. For citation: Kurysheva N.I. OCT angiography and its role in the study of retinal microcirculation in glaucoma (part two). Russian ophthalmological journal. 2018; 11 (3): 95-100 (In Russian). doi: 10.21516/2072-0076-2018-11-3-95-100

About the Author

N. I. Kurysheva
A.I. Burnazyan Ophthalmological Center, Moscow, Russia
Russian Federation


References

1. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7): 1322-32. doi.org/ 10.1016/j.ophtha.2014.01.021

2. Liu L., Jia Y., Takusagawa H.L. et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9): 1045-52. doi.org/10.1001/jamaophthalmol.2015.2225

3. Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253(9): 1557-64. doi.org/10.1007/s00417-015-3095-y

4. Lévêque P.M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016; 2016: 6956717. doi.org/10.1155/2016/6956717

5. Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б. Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14(2): 20-32. Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. Role of OCT with angiography function in the early diagnostics and monitoring of glaucoma. Natsional’ny zhurnal glaucoma. 2016; 14(2): 20-32. (In Russian).

6. Hollo G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS ONE. 2017. 12(2): e0171541. doi:10.1371/journal.pone.0171541

7. Yarmohammadi A., Zangwill L.M., Diniz-Filho A. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis Sci. 2016; 57(9): 451-9. doi.org/10.1167/iovs.15-18944

8. Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 101(9): 1261-8. doi: 10.1136/bjophthalmol-2016-309642

9. Akil H., Huang A.S., Francis B.A., Sadda S.R., Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017; 12(2): e0170476. doi:10.1371/journal.pone.0170476

10. Rao H.L., Pradhan Z.S., Weinreb R.N. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2016; Nov. 29. pii: bjophthalmol-2016-309377. doi.org/10.1136/bjophthalmol-2016-309377

11. Suh M.H., Zangwill L.M., Manalastas P.I. et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123(11): 2309-2317. doi.org/10.1016/j.ophtha.2016.07.023

12. Rao H.L., Pradhan Z.S., Weinreb RN. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016; 171: 75-83. doi.org/10.1016/j.ajo.2016.08.030

13. Kurysheva N.I. Macula in glaucoma: vascularity evaluated by OCT angiography. Res. J. Pharmaceutical, Biological and Chemical Sci. 2016; 7(5): 651-62.

14. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73. doi.org/10.1016/j.preteyeres.2004.06.001

15. Shoji T., Zangwill L.M., Akagi T., et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017; 182: 107-117. doi: 10.1016/j.ajo.2017.07.011

16. Scripsema N.K., Garcia P.M., Bavier R.D., e al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 611-20. doi.org/10.1167/iovs.15-18945

17. Bojikian K.D., Chen C.-L., Wen J.C, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016; 11(5): e0154691. doi.org/ 10.1371/journal.pone.0154691

18. Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252-e266. doi.org/ 10.1111/aos.12298

19. Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121(3): 750-8. doi.org/10.1016/j.ophtha.2013.10.022

20. Falsini B., Anselmi G.M., Marangoni D., et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2011; 52(2): 1064-9. doi.org/10.1167/iovs.10-5964

21. Zeitz O., Galambos P., Wagenfeld L., et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br. J. Ophthalmol. 2006; 90(10): 1245-8. doi.org/10.1136/bjo.2006.093633

22. Zheng Y., Cheung N., Aung T., et al. Relationship of retinal vascular caliber with retinal nerve fiber layer thickness: the Singapore Malay Eye Study. Invest. Ophthalmol. Vis. Sci. 2009; 50(9): 4091-6. doi.org/10.1167/iovs.09-3444

23. Cheung N., Huynh S., Wang J.J., et al. Relationships of retinal vessel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children. Invest. Ophthalmol. Vis. Sci. 2008; 49(6): 2403-8. doi.org/10.1167/iovs.07-1313

24. Yu J., Gu R., Zong Y., et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 204-10. doi.org/10.1167/iovs.15-18630

25. Chui T.Y.P., Zhong Z., Song H., Burns S.A. Foveal avascular zone and its relationship to foveal pit shape. Optometry Vision Sci. 2012; 89(5): 602-10.

26. Tick S., Rossant F., Ghorbel I., et al. Foveal shape and structure in a normal population. Invest Ophthalmol. Vis. Sci. 2011; 52(8): 5105-10. doi.org/10.1167/iovs.10-7005

27. Tham Y.C., Cheng C.Y., Zheng Y., et al. Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes. Invest Ophthalmol Vis Sci. 2013; 54(12): 7309-16. doi.org/10.1167/iovs.13-12796

28. Yu P.K., Cringle S.J., Yu D. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014; 129: 83-92. doi.org/10.1016/j.exer.2014.10.020

29. Lee E.J., Lee K.M., Lee S.H., Kim T.-W. OCT-angiography of the peripapillary retina in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(14): 6265-70. doi.org/10.1167/ iovs.16-20287


Review

For citations:


Kurysheva N.I. OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART TWO). Russian Ophthalmological Journal. 2018;11(3):95-100. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-3-95-100

Views: 2097


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)