OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART TWO)
https://doi.org/10.21516/2072-0076-2018-11-3-95-100
Abstract
About the Author
N. I. KuryshevaRussian Federation
References
1. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7): 1322-32. doi.org/ 10.1016/j.ophtha.2014.01.021
2. Liu L., Jia Y., Takusagawa H.L. et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015; 133(9): 1045-52. doi.org/10.1001/jamaophthalmol.2015.2225
3. Wang X., Jiang C., Ko T., et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch. Clin. Exp. Ophthalmol. 2015; 253(9): 1557-64. doi.org/10.1007/s00417-015-3095-y
4. Lévêque P.M., Zéboulon P., Brasnu E., Baudouin C., Labbé A. Optic disc vascularization in glaucoma: value of spectral-domain optical coherence tomography angiography. J. Ophthalmol. 2016; 2016: 6956717. doi.org/10.1155/2016/6956717
5. Курышева Н.И., Маслова Е.В., Трубилина А.В., Лагутин М.Б. Роль оптической когерентной томографии с функцией ангиографии в ранней диагностике и мониторинге глаукомы. Национальный журнал глаукома. 2016; 14(2): 20-32. Kurysheva N.I., Maslova E.V., Trubilina A.V., Lagutin M.B. Role of OCT with angiography function in the early diagnostics and monitoring of glaucoma. Natsional’ny zhurnal glaucoma. 2016; 14(2): 20-32. (In Russian).
6. Hollo G. Relationship between optical coherence tomography sector peripapillary angioflow-density and Octopus visual field cluster mean defect values. PLoS ONE. 2017. 12(2): e0171541. doi:10.1371/journal.pone.0171541
7. Yarmohammadi A., Zangwill L.M., Diniz-Filho A. et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest. Ophthalmol. Vis Sci. 2016; 57(9): 451-9. doi.org/10.1167/iovs.15-18944
8. Geyman L.S., Garg R.A., Suwan Y., et al. Peripapillary perfused capillary density in primary open-angle glaucoma across disease stage: an optical coherence tomography angiography study. Br. J. Ophthalmol. 2017; 101(9): 1261-8. doi: 10.1136/bjophthalmol-2016-309642
9. Akil H., Huang A.S., Francis B.A., Sadda S.R., Chopra V. Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes. PLoS ONE. 2017; 12(2): e0170476. doi:10.1371/journal.pone.0170476
10. Rao H.L., Pradhan Z.S., Weinreb R.N. et al. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary open-angle and angle-closure glaucoma. Br. J. Ophthalmol. 2016; Nov. 29. pii: bjophthalmol-2016-309377. doi.org/10.1136/bjophthalmol-2016-309377
11. Suh M.H., Zangwill L.M., Manalastas P.I. et al. Optical coherence tomography angiography vessel density in glaucomatous eyes with focal lamina cribrosa defects. Ophthalmology. 2016; 123(11): 2309-2317. doi.org/10.1016/j.ophtha.2016.07.023
12. Rao H.L., Pradhan Z.S., Weinreb RN. et al. Regional comparisons of optical coherence tomography angiography vessel density in primary open-angle glaucoma. Am. J. Ophthalmol. 2016; 171: 75-83. doi.org/10.1016/j.ajo.2016.08.030
13. Kurysheva N.I. Macula in glaucoma: vascularity evaluated by OCT angiography. Res. J. Pharmaceutical, Biological and Chemical Sci. 2016; 7(5): 651-62.
14. Burgoyne C.F., Downs J.C., Bellezza A.J., Suh J.K., Hart R.T. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog. Retin. Eye Res. 2005; 24(1): 39-73. doi.org/10.1016/j.preteyeres.2004.06.001
15. Shoji T., Zangwill L.M., Akagi T., et al. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. Am J Ophthalmol. 2017; 182: 107-117. doi: 10.1016/j.ajo.2017.07.011
16. Scripsema N.K., Garcia P.M., Bavier R.D., e al. Optical coherence tomography angiography analysis of perfused peripapillary capillaries in primary open-angle glaucoma and normal-tension glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 611-20. doi.org/10.1167/iovs.15-18945
17. Bojikian K.D., Chen C.-L., Wen J.C, et al. Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography-based microangiography. PLoS One. 2016; 11(5): e0154691. doi.org/ 10.1371/journal.pone.0154691
18. Costa V.P., Harris A., Anderson D., et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014; 92: e252-e266. doi.org/ 10.1111/aos.12298
19. Sehi M., Goharian I., Konduru R., et al. Retinal blood flow in glaucomatous eyes with single-hemifield damage. Ophthalmology. 2014; 121(3): 750-8. doi.org/10.1016/j.ophtha.2013.10.022
20. Falsini B., Anselmi G.M., Marangoni D., et al. Subfoveal choroidal blood flow and central retinal function in retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2011; 52(2): 1064-9. doi.org/10.1167/iovs.10-5964
21. Zeitz O., Galambos P., Wagenfeld L., et al. Glaucoma progression is associated with decreased blood flow velocities in the short posterior ciliary artery. Br. J. Ophthalmol. 2006; 90(10): 1245-8. doi.org/10.1136/bjo.2006.093633
22. Zheng Y., Cheung N., Aung T., et al. Relationship of retinal vascular caliber with retinal nerve fiber layer thickness: the Singapore Malay Eye Study. Invest. Ophthalmol. Vis. Sci. 2009; 50(9): 4091-6. doi.org/10.1167/iovs.09-3444
23. Cheung N., Huynh S., Wang J.J., et al. Relationships of retinal vessel diameters with optic disc, macular and retinal nerve fiber layer parameters in 6-year-old children. Invest. Ophthalmol. Vis. Sci. 2008; 49(6): 2403-8. doi.org/10.1167/iovs.07-1313
24. Yu J., Gu R., Zong Y., et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest. Ophthalmol. Vis. Sci. 2016; 57(9): 204-10. doi.org/10.1167/iovs.15-18630
25. Chui T.Y.P., Zhong Z., Song H., Burns S.A. Foveal avascular zone and its relationship to foveal pit shape. Optometry Vision Sci. 2012; 89(5): 602-10.
26. Tick S., Rossant F., Ghorbel I., et al. Foveal shape and structure in a normal population. Invest Ophthalmol. Vis. Sci. 2011; 52(8): 5105-10. doi.org/10.1167/iovs.10-7005
27. Tham Y.C., Cheng C.Y., Zheng Y., et al. Relationship between retinal vascular geometry with retinal nerve fiber layer and ganglion cell-inner plexiform layer in nonglaucomatous eyes. Invest Ophthalmol Vis Sci. 2013; 54(12): 7309-16. doi.org/10.1167/iovs.13-12796
28. Yu P.K., Cringle S.J., Yu D. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp. Eye Res. 2014; 129: 83-92. doi.org/10.1016/j.exer.2014.10.020
29. Lee E.J., Lee K.M., Lee S.H., Kim T.-W. OCT-angiography of the peripapillary retina in primary open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 2016; 57(14): 6265-70. doi.org/10.1167/ iovs.16-20287
Review
For citations:
Kurysheva N.I. OCT ANGIOGRAPHY AND ITS ROLE IN THE STUDY OF RETINAL MICROCIRCULATION IN GLAUCOMA (PART TWO). Russian Ophthalmological Journal. 2018;11(3):95-100. (In Russ.) https://doi.org/10.21516/2072-0076-2018-11-3-95-100