Preview

Russian Ophthalmological Journal

Advanced search

Evaluation of choroidal thickness and anatomical and optical parameters of the eye in the early period after orthokeratology myopia correction

https://doi.org/10.21516/2072-0076-2019-12-1-26-33

Abstract

Purpose: to evaluate subfoveal choroidal thickness (SFCT) and other anatomical parameters of the eye in the early stages after orthokeratological correction of myopia. Material and Methods. The study was conducted on 20 myopic Caucasian patients (40 eyes) with moderate myopia. The main group consisted of 10 children with myopia -4.5 ± 1.03 D aged 11 ± 2.26 years, who were examined before the correction with orthokeratological lenses (OK-lenses) ESA-DL (Dr Lens Tehno, Russia) and 3 weeks after it. The control group comprised 10 patients (20 eyes) with myopia -3.84 ± 1.12 D aged 11.6 ± 1.17 years, who wore monofocal glasses as a correction. SFCT was measured with RS-3000 Advance optical coherent tomograph (OCT) (Nidek, Japan), while axial length (AL), peripheral eye length (PEL), and anterior chamber depth (ACD) was measured with IOL Master 500 optical biometer (Carl Zeiss, Germany), and central cornea thickness (CCT), epithelial thickness (ET) and corneal stroma (ST) thickness, with OCT Avanti Rtvue XR (Optovue, USA). All patients were tested before and 3 weeks after the start of wearing lenses or glasses. Results. SFCF increased by 24.25 ± 19 μm as compared with changes in the control group (p < 0.001) after 3 weeks of wearing OK-lenses. A notable negative correlation of changes in AL and SFCT was revealed in the main group (r = -0.48). CCT decreased by 14.6 ± 2.54 μm in the group wearing OKlenses. The main OK-lens contribution to the statistically significant change in the CCT concerned the epithelium, whose thickness showed a 12.7 ± 1.58 μm (22.6 %) change as compared with the initial data (p < 0.001) and with the change in the control group (p < 0.001). The decrease in AL showed an insignificant correlation with the decrease in the CCT: r = 0.16. ACD, PEL and ST did not change significantly (p > 0.05). Conclusion. SFCT shows an increase in the early stages after OK correction. When controlling the growth of the eye in patients with OK lenses, we need to take into account the impact of the choroid on the results of AL measurement.

About the Authors

S. V. Milash
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

researcher, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



E. P. Tarutta
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., Professor, head of the department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



M. V. Epishina
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Cand. Med. Sci., ophthalmologist, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



G. A. Markossian
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Dr. Med. Sci., leading researcher, department of refraction pathology, binocular vision and ophthalmoergonomics

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



K. A. Ramazanova
Moscow Helmholtz Research Institute of Eye Diseases
Russian Federation

Cand. Med. Sci., head of ultrasound diagnostic unit

14/19, Sadovaya-Chernogryazskaya St., Moscow, 105062, Russia



References

1. Nickla D.L., Wallman J. The multifunctional choroid. Progress in retinal and eye research. 2010; 29 (2): 144–68. http://doi.org/10.1016/j.preteyeres.2009.12.002

2. Summers J.A. The choroid as a sclera growth regulator. Exp. Eye. Res. 2013; 114: 120–7 http://doi.org/10.1016/j.exer.2013.03.008

3. Troilo D., Nickla D., Wildsoet C. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest. Ophthalmol. Vis. Sci. 2000; 41: 1249–58.

4. Hung L.-F., Wallman J., Smith E. Vision-dependent changes in the choroidal thickness of Macaque monkeys. Invest. Ophthalmol. Vis. Sci. 2000; 41:1259–69.

5. Wildsoet C., Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 1995; 35:1175–94. https://doi.org/10.1016/0042-6989(94)00233-C

6. Howlett M., McFadden S. Spectacle lens compensation in the pigmented guinea pig. Vision Res. 2009; 49:219–27. https://doi.org/10.1016/j.visres.2008.10.008

7. Zhu X., Park T.W., Winawer J., et al. In a matter of minutes, the eye can know which way to grow. Invest. Ophthalmol. Vis. Sci. 2005; 46: 2238–41. https://doi.org/10.1167/iovs.04-0956

8. Wallman J., Wildsoet C., Xu A., et al. Moving the retina: choroidal modulation of refractive state. Vision Res. 1995; 35: 37–50. https://doi.org/10.1016/0042-6989(94)E0049-Q

9. Read S.A., Collins M.J., Sander B. Human optical axial length and defocus. Invest. Ophthalmol. Vis. Sci. 2010; 51: 6262–9. http://doi.org/10.1167/iovs.10-5457

10. Chiang S.T., Phillips J.R., Backhouse S. Effect of retinal image defocus on the thickness of the human choroid. Ophthalmic Physiol. Opt. 2015; 35: 405–13. http://doi.org/10.1111/opo.12218

11. Wang D., Chun R.K.M., Liu M., et al. Optical defocus rapidly changes choroidal thickness in schoolchildren. PLoS One. 2016; 11 (8): e0161535. http://doi.org/10.1371/journal.pone.0161535

12. Chakraborty R., Read S.A., Collins M.J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp. Eye Res. 2012; 103: 47–54. http://doi.org/10.1016/j.exer.2012.08.002

13. Chakraborty R., Read S.A., Collins M.J. Hyperopic defocus and diurnal changes in human choroid and axial length. Optom. Vis. Sci. 2013; 90 (11): 1187–98. http://doi.org/10.1097/OPX.0000000000000035

14. Tarutta E.P., Milash S.V., Tarasova N.A., et al. Induced peripheral defocus and the shape of the posterior eye pole in orthokeratological myopia correction. Russian Ophthalmological Journal. 2015; 8 (3): 52–6 (in Russian).

15. Tarutta E.P., Verzhanskaia T.Yu. Possible mechanisms of orthokeratological contact lenses inhibiting impact on myopia progression. Russian Ophthalmological Journal. 2008; 1 (2): 26–30 (in Russian).

16. Sun Y., Xu F., Zhang T., et al. Orthokeratology to control myopia progression: a meta-analysis. PLoS ONE. 2015; 10 (4): e0124535. http://doi.org/10.1371/journal.pone.0124535

17. Tarutta E.P., Verzhanskaya T.Yu. Stabilizing effect of orthokeratology lenses (ten-year follow-up results). Vestnik oftal’mologii. 2017; 1: 49–54 (in Russian). http://doi.org/10.17116/engoftalma20171331-3

18. Hiraoka T., Sekine Y., Okamoto F., Mihashi T., Oshika T. Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic. Physiol. Opt. 2018; 38: 281–9. https://doi.org/10.1111/opo.12460

19. Gardner D.J, Walline J.J., Mutti D.O. Choroidal thickness and peripheral myopic defocus during orthokeratology. Optom Vis Sci. 2015; 92 (5): 579–88. https://doi.org/10.1097/OPX.0000000000000573

20. Chen Z., Xue F., Zhou J., Qu X., Zhou X. Effects of orthokeratology on choroidal thickness and axial length. Optom. Vis. Sci. 2016; 93 (9): 1064–71. https://doi.org/10.1097/OPX.0000000000000894

21. Li Z., Cui D., Hu Y., et al. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Contact Lens and Anterior Eye. 2017; 40 (6): 417–23. https://doi.org/10.1016/j.clae.2017.09.010

22. Öner V., Bulut A., Öter K. The effect of topical anti-muscarinic agents on subfoveal choroidal thickness in healthy adults. Eye. 2016; 30 (7): 925–8. http://doi.org/10.1038/eye.2016.61

23. Tarutta E.P., Milash S.V., Tarasova N.A., et al. Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry. Vestnik oftal’mologii. 2014; 6: 44–9 (in Russian).

24. Swarbrick H.A., Alharbi A., Watt K., Lum E., Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology. 2015; 122: 620–30. https://doi.org/10.1016/j.ophtha.2014.09.028

25. Jessen G.N. Contact lenses as a therapeutic device. Am. J. Optom. Arch. Am. Acad. Optom. 1964; 41: 429–35.

26. Cheung S.W., Cho P. Long-term effect of orthokeratology on the anterior segment length. Contact Lens and Anterior Eye. 2016; 4: 26–25. https://doi.org/10.1016/j.clae.2016.02.003

27. Milash S.V., Tarutta E.P. Changes of corneal epithelial thickness at an early stage after orthokeratology lens correction according to Spectral Domain Optical Coherence Tomography. Russian Ophthalmological Journal. 2017; 10 (3): 49–54 (in Russian.). https://doi.org/10.21516/2072-0076-2017-10-3-49-54

28. Nagorsky P.G., Belkina V.V., Glok M.A., Chernykh V.V. The state of epithelium and corneal stroma in children with myopia using orthokeratology lenses (according to data from optical coherence tomography). Sovremennaja optometrija. 2012; 2: 18–27 (in Russian).

29. Read S. A., Alonso-Caneiro D., Vincent S. J., Collins M. J. Longitudinal changes in choroidal thickness and eye growth in childhood. Invest. Ophthalmol. Vis. Sci. 2015; 56: 3103–12. https://doi.org/10.1167/iovs.15-16446

30. Fontaine M., Gaucher, D., Sauer A., Speeg-Schatz C. Choroidal thickness and ametropia in children: a longitudinal study. European journal of ophthalmology. 2017; 27 (6): 730–4. https://doi.org/10.5301/ejo.5000965

31. Nickla D.L., Kristen Totonelly M.S. Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth. Clin. Exp. Optom. 2015; 98: 564–70. https://doi.org/10.1111/cxo.12317


Review

For citations:


Milash S.V., Tarutta E.P., Epishina M.V., Markossian G.A., Ramazanova K.A. Evaluation of choroidal thickness and anatomical and optical parameters of the eye in the early period after orthokeratology myopia correction. Russian Ophthalmological Journal. 2019;12(1):26-33. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-1-26-33

Views: 1238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-0076 (Print)
ISSN 2587-5760 (Online)