Retinal and choroidal morphological changes in Huntington's disease
https://doi.org/10.21516/2072-0076-2019-12-1-56-63
Abstract
Purpose: to investigate the choroidal and retinal morphology in Huntington's disease (HD) using optical coherence tomography (OCT) and to analyze how the parameters studied correlate with the clinical data. Material and methods. The study included two groups of subjects, (1) 44 HD patients, averagely aged 37.6 ± 10.2 yrs, and (2) 31 healthy volunteers, averagely aged 37.3 ± 10.8 yrs. The groups had matching age, sex distribution, intraocular pressure and mean refractive error. In the study group, 21 patients had pre-manifest and 23, manifest HD stage. All patients underwent a thorough neurological and ophthalmic examination which included retinal OCT. The foveal choroidal thickness, retinal thickness in 9 areas of the macular zone, retinal ganglion cells complex (GCC) and peripapillary retinal nerve fiber layer thickness (RNFL) were evaluated in 4 quadrants. CAG repeat expansion size (cytosine-adenine-guanine) in the huntingtin gene, the disease duration and Unified HD Rating Scale motor scores (UHDRS) were evaluated for HD patients. Results. The range of the CAG repeat expansion size in the study group was 37–56 repeats (44.3 ± 3.8), the UHDRS motor score was 36.3 ± 29.7, disease duration was 13.7 ± 7.2 years. OCT revealed a significant decrease in the foveal choroidal thickness, GCC complex thickness, average, temporal, inferior and nasal RNFL thickness and total retinal thickness in the external temporal area in HD patients as compared to the controls. In addition, an inverse correlation between the disease duration, UHDRS Motor Score and a number of OCT parameters was found. Conclusion. The results confirm the promising potential of retinal tomographic parameters as a biomarker for early diagnosis and monitoring of the neurodegenerative process progression. The topography of retinal thickness reduction indicates a specific pattern of retinal neurodegeneration in HD.
About the Authors
S. N. SvetozarskiyRussian Federation
Ph.D. student, department of eye diseases
10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
S. V. Kopishinskaya
Russian Federation
Cand. Med. Sci., associate professor, department of neurology, psychiatry and addiction medicine, postgraduate faculty
10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
I. G. Smetankin
Russian Federation
Dr. Med. Sci., head of chair of ophthalmology
10/1, Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
References
1. McColgan P., Tabrizi S. Huntington's disease: a clinical review. Eur. J. Neurol. 2018; 25 (1): 24–34. doi: 10.1111/ene.13413
2. Seliverstov Y., Dranitsyna M., Ivashynka A., et al. Huntington disease in Russia: an epidemiological challenge? Neurology 2017; 88 (Suppl 16): P4.323.
3. Fisher E., Hayden M. Multisource ascertainment of Huntington disease in Canada: Prevalence and population at risk. Mov. Disord. 2013; 29 (1): 105–14. doi: 10.1002/mds.25717
4. Morrison P., Harding-Lester S., Bradley A. Uptake of Huntington disease predictive testing in a complete population. Clin. Genet. 2010; 80 (3): 281–6. doi: 10.1111/j.1399-0004.2010.01538.x
5. Evans S., Douglas I., Rawlins M., et al. Prevalence of adult Huntington's disease in the UK based on diagnoses recorded in general practice records. J. Neurol. Neurosurg. Psychiatry. 2013; 84 (10): 1156–60. doi: 10.1136/jnnp-2012-304636
6. Ivanova-Smolenskaia I.A., Ovchinnikov I.V., Illarioshkin S.N., et al. Molecular genetic testing in the diagnosis of sporadic cases of Huntington's chorea. Zhurnal Nevrologii Psikhiatrii im S.S. Korsakova. 1998; 98 (3): 19–22 (in Russian).
7. Reilmann R., Leavitt B., Ross C. Diagnostic criteria for Huntington's disease based on natural history. Mov. Disord. 2014; 29 (11): 1335–41. doi: 10.1002/mds.26011
8. Bates G., Dorsey R., Gusella J., et al. Huntington disease. Nat. Rev. Dis. Primers. 2015; 1: 15005. doi: 10.1038/nrdp.2015.5
9. Ross C., Aylward E., Wild E., et al. Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 2014; 10 (4): 204–16. doi: 10.1038/nrneurol.2014.24
10. Illarioshkin S.N. Huntington's disease as model for studying of neurodegenerative diseases. Byulleten natsional’nogo obshchestva po izucheniyu bolezni Parkinsona i rasstroystvam dvizheniy. 2016; 1: 3–11 (in Russian).
11. Doustar J., Torbati T., Black K., Koronyo Y., Koronyo-Hamaoui M. Optical Coherence Tomography in Alzheimer’s Disease and Other Neurodegenerative Diseases. Frontiers in Neurology. 2017; 8: 701. doi: 10.3389/fneur.2017.00701
12. Svetozarskiy S.N., Kopishinskaya S.V. Retinal Optical Coherence Tomography in Neurodegenerative Diseases (Review). Sovremennye tekhnologii v medicine. 2015; 7 (1): 116–23 (in Russian). doi: 10.17691/stm2015.7.1.14
13. Kopishinskaya S., Svetozarskiy S., Antonova V., Gustov A. The first data on retinal optical coherence tomography parameters in Huntington’s disease. Eur. J. Neurol. 2014 May; 21(Suppl 1): 36.
14. Kersten H., Danesh-Meyer H., Kilfoyle D., Roxburgh R. Optical coherence tomography findings in Huntington’s disease: a potential biomarker of disease progression. J. Neurol. 2015; 262 (11): 2457–65. doi: 10.1007/s00415-015-7869-2
15. Andrade C., Beato J., Monteiro A., et al. Spectral-Domain Optical Coherence Tomography as a potential biomarker in Huntington's disease. Mov. Disord. 2016; 31 (3): 377–83. doi: 10.1002/mds.26486
16. Bayhan H., Aslan Bayhan S., Celikbilek A., Tanık N., Gürdal C. Evaluation of the chorioretinal thickness changes in Alzheimer's disease using spectraldomain optical coherence tomography. Clin. Exp. Ophthalmol. 2014; 43 (2): 145–51. doi: 10.1111/ceo.12386
17. Tan O., Li G., Lu A., Varma R., Huang D. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008; 115 (6): 949–56. doi: 10.1016/j.ophtha.2007.08.011
18. Inzelberg R., Ramirez J.A., Nisipeanu P., Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vis. Res. 2004; 44 (24): 2793–7. doi: 10.1016/j.visres.2004.06.009
19. Cunha J., Proença R., Dias-Santos A., et al. Choroidal thinning: Alzheimer's disease and aging. Alzheimers Dement (Amst) 2017; 8: 11–7. doi: 10.1016/j.dadm.2017.03.004
20. Eraslan M., Cerman E., Yildiz Balci S., et al. The choroid and lamina cribrosa is affected in patients with Parkinson's disease: enhanced depth imaging optical coherence tomography study. Acta Ophthalmol. 2015; 94 (1): e68-e75. doi: 10.1111/aos.12809
21. Garcia-Martin E., Pablo L., Bambo M., et al. Comparison of peripapillary choroidal thickness between healthy subjects and patients with Parkinson’s disease. PLoS One. 2017; 12 (5): e0177163. doi: 10.1371/journal.pone.0177163
22. Laviers H., Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch. Clin. Exp. Ophthalmol. 2014; 252: 1871–83. doi: 10.1007/s00417-014-2840-y
23. Drouin-Ouellet J., Sawiak S., Cisbani G., et al. Cerebrovascular and bloodbrain barrier impairments in Huntington's disease: Potential implications for its pathophysiology. Ann Neurol 2015; 78 (2): 160–177. doi: 10.1002/ana.24406
24. Bogolepova A.N, Zhuravleva A.N., Makhnovich E.V. Perspectives of the diagnosis of Alzheimer’s disease using optical coherent tomography. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2017; 117 (9): 112–7 (in Russian). doi: 10.17116/jnevro201711791112-117
25. Chesnokova N.B., Pavlenko T.A., Ugrumov M.V. Ophthalmic disorders as a manifestation of Parkinson's disease. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova. 2017; 117 (9): 124–31. (In Russian). doi: 10.17116/jnevro201711791124-131
26. denHaan J., Verbraak F., Visser P., Bouwman F. Retinal thickness in Alzheimer's disease: A systematic review and meta-analysis. Alzheimers Dement (Amst) 2017; 6: 162–70. doi: 10.1016/j.dadm.2016.12.014
27. Eraslan M., Çerman E., Çekiç O., et al. Neurodegeneration in ocular and central nervous systems: optical coherence tomography study in normal-tension glaucoma and Alzheimer disease. Turk. J. Med. Sci. 2015; 45: 1106–14. doi: 10.3906/sag-1406-145
28. Cesareo M., Martucci A., Ciuffoletti E., et al. Association between Alzheimer's disease and glaucoma: a study based on Heidelberg retinal tomography and frequency doubling technology perimetry. Front. Neurosci. 2015; 9: 479. doi: 10.3389/fnins.2015.00479
29. Lin I., Wang Y., Wang T., et al. Glaucoma, Alzheimer's Disease, and Parkinson's Disease: An 8-Year Population-Based Follow-Up Study. PLoS One. 2014; 9 (10): e108938. doi: 10.1371/journal.pone.0108938
30. Davis B., Crawley L., Pahlitzsch M., Javaid F., Cordeiro M. Glaucoma: the retina and beyond. Acta Neuropathologica. 2016; 132 (6): 807–26. doi: 10.1007/s00401-016-1609-2
31. Avetisov S.E., Sheremet N.L., Fomin A.V., et al. Morphological changes in retina and optic nerve head in patients with Leber's hereditary optic neuropathy. Vestnik Oftal’mologii. 2014; 130 (1): 4–11 (in Russian).
32. La Morgia C., Di Vito L., Carelli V., Carbonelli M. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front. Neurol. 2017; 8: 710. doi: 10.3389/fneur.2017.00710
33. O'Donnell B., Blekher T., Weaver M., et al. Visual perception in prediagnostic and early stage Huntington's disease. J. Int. Neuropsychol. Soc. 2008; 14 (03): 446–53. doi: 10.1017/s1355617708080405
34. Shirendeb U., Reddy A., Manczak M., et al. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage. Hum. Mol. Genet. 2011; 20 (7): 1438–55. doi: 10.1093/hmg/ddr024
35. Wong-Riley M. Energy metabolism of the visual system. Eye Brain. 2010; 2: 99–116. doi: 10.2147/eb.s9078
36. Batcha A.H., Greferath U., Jobling A.I., et al. Retinal dysfunction, photoreceptor protein dysregulation and neuronal remodeling in the R6/1 mouse model of Huntington’s disease. Neurobiol. Dis. 2012; 45 (3): 887–96. doi: 10.1016/j.nbd.2011.12.004
37. Spaide R., Koizumi H., Pozonni M. Enhanced Depth Imaging Spectral-Domain Optical Coherence Tomography. Am. J. Ophthalmol. 2008; 146 (4): 496–500. doi: 10.1016/j.ajo.2008.05.032
38. Barteselli G., Chhablani J., El-Emam S., et al. Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis. Ophthalmology. 2012; 119 (12): 2572–2578. doi: 10.1016/j.ophtha.2012.06.065
39. Chakraborty R., Read S.A., Collins M.J. Diurnal variations in axial length, choroidal thickness, intraocular pressure, and ocular biometrics. Invest. Ophthalmol. Vis. Sci. 2011; 52: 5121–9. doi: 10.1167/iovs.11-7364
40. Usui S., Ikuno Y., Akiba M., et al. Circadian changes in subfoveal choroidal thickness and the relationship with circulatory factors in healthy subjects. Invest. Ophthalmol. Vis. Sci. 2012; 53: 2300–7. doi: 10.1167/iovs.11-8383
41. Tan K., Gupta P., Agarwal A., et al. State of science: Choroidal thickness and systemic health. Surv. Ophthalmol. 2016; 61 (5): 566–81. doi: 10.1016/j.survophthal.2016.02.007
42. Svetozarskiy S.N., Kopishinskaya S.V., Gustov A.V., et al. Ophthalmic manifestations of Huntington’s disease. Vestnik Oftal'mologii. 2015; 131 (5): 82–6 (In Russian). doi: 10.17116/oftalma2015131582-86
Review
For citations:
Svetozarskiy S.N., Kopishinskaya S.V., Smetankin I.G. Retinal and choroidal morphological changes in Huntington's disease. Russian Ophthalmological Journal. 2019;12(1):56-63. (In Russ.) https://doi.org/10.21516/2072-0076-2019-12-1-56-63